Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 3 |
| Since 2017 (last 10 years) | 6 |
| Since 2007 (last 20 years) | 9 |
Descriptor
| Evaluation Methods | 12 |
| Maximum Likelihood Statistics | 12 |
| Sample Size | 12 |
| Error of Measurement | 6 |
| Factor Analysis | 6 |
| Goodness of Fit | 5 |
| Structural Equation Models | 5 |
| Computation | 4 |
| Monte Carlo Methods | 4 |
| Simulation | 4 |
| Least Squares Statistics | 3 |
| More ▼ | |
Source
| Educational and Psychological… | 2 |
| Journal of Experimental… | 2 |
| Applied Psychological… | 1 |
| Grantee Submission | 1 |
| Multivariate Behavioral… | 1 |
| ProQuest LLC | 1 |
| Psychological Methods | 1 |
| Psychometrika | 1 |
| Society for Research on… | 1 |
Author
| Yuan, Ke-Hai | 2 |
| Amota Ataneka | 1 |
| Auerswald, Max | 1 |
| Ben Kelcey | 1 |
| Brosseau-Liard, Patricia E. | 1 |
| Fangxing Bai | 1 |
| Harring, Jeffrey R. | 1 |
| Hayashi, Kentaro | 1 |
| Jobst, Lisa J. | 1 |
| Kyle Cox | 1 |
| Li, Jian | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 9 |
| Reports - Research | 9 |
| Reports - Evaluative | 2 |
| Dissertations/Theses -… | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
| Adult Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Yasuhiro Yamamoto; Yasuo Miyazaki – Journal of Experimental Education, 2025
Bayesian methods have been said to solve small sample problems in frequentist methods by reflecting prior knowledge in the prior distribution. However, there are dangers in strongly reflecting prior knowledge or situations where much prior knowledge cannot be used. In order to address the issue, in this article, we considered to apply two Bayesian…
Descriptors: Sample Size, Hierarchical Linear Modeling, Bayesian Statistics, Prior Learning
Ben Kelcey; Fangxing Bai; Amota Ataneka; Yanli Xie; Kyle Cox – Society for Research on Educational Effectiveness, 2024
We develop a structural after measurement (SAM) method for structural equation models (SEMs) that accommodates missing data. The results show that the proposed SAM missing data estimator outperforms conventional full information (FI) estimators in terms of convergence, bias, and root-mean-square-error in small-to-moderate samples or large samples…
Descriptors: Structural Equation Models, Research Problems, Error of Measurement, Maximum Likelihood Statistics
Jobst, Lisa J.; Auerswald, Max; Moshagen, Morten – Educational and Psychological Measurement, 2022
Prior studies investigating the effects of non-normality in structural equation modeling typically induced non-normality in the indicator variables. This procedure neglects the factor analytic structure of the data, which is defined as the sum of latent variables and errors, so it is unclear whether previous results hold if the source of…
Descriptors: Goodness of Fit, Structural Equation Models, Error of Measurement, Factor Analysis
Li, Jian; Lomax, Richard G. – Journal of Experimental Education, 2017
Using Monte Carlo simulations, this research examined the performance of four missing data methods in SEM under different multivariate distributional conditions. The effects of four independent variables (sample size, missing proportion, distribution shape, and factor loading magnitude) were investigated on six outcome variables: convergence rate,…
Descriptors: Monte Carlo Methods, Structural Equation Models, Evaluation Methods, Measurement Techniques
McNeish, Daniel; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…
Descriptors: Growth Models, Goodness of Fit, Error Correction, Sampling
Yuan, Ke-Hai; Zhang, Zhiyong; Zhao, Yanyun – Grantee Submission, 2017
The normal-distribution-based likelihood ratio statistic T[subscript ml] = nF[subscript ml] is widely used for power analysis in structural Equation modeling (SEM). In such an analysis, power and sample size are computed by assuming that T[subscript ml] follows a central chi-square distribution under H[subscript 0] and a noncentral chi-square…
Descriptors: Statistical Analysis, Evaluation Methods, Structural Equation Models, Reliability
Rhemtulla, Mijke; Brosseau-Liard, Patricia E.; Savalei, Victoria – Psychological Methods, 2012
A simulation study compared the performance of robust normal theory maximum likelihood (ML) and robust categorical least squares (cat-LS) methodology for estimating confirmatory factor analysis models with ordinal variables. Data were generated from 2 models with 2-7 categories, 4 sample sizes, 2 latent distributions, and 5 patterns of category…
Descriptors: Factor Analysis, Computation, Simulation, Sample Size
Victor Snipes Swaim – ProQuest LLC, 2009
Numerous procedures have been suggested for determining the number of factors to retain in factor analysis. However, previous studies have focused on comparing methods using normal data sets. This study had two phases. The first phase explored the Kaiser method, Scree test, Bartlett's chi-square test, Minimum Average Partial (1976&2000),…
Descriptors: Factor Analysis, Factor Structure, Maximum Likelihood Statistics, Evaluation Methods
Woods, Carol M. – Applied Psychological Measurement, 2008
In Ramsay-curve item response theory (RC-IRT), the latent variable distribution is estimated simultaneously with the item parameters of a unidimensional item response model using marginal maximum likelihood estimation. This study evaluates RC-IRT for the three-parameter logistic (3PL) model with comparisons to the normal model and to the empirical…
Descriptors: Test Length, Computation, Item Response Theory, Maximum Likelihood Statistics
Lubke, Gitta; Neale, Michael C. – Multivariate Behavioral Research, 2006
Latent variable models exist with continuous, categorical, or both types of latent variables. The role of latent variables is to account for systematic patterns in the observed responses. This article has two goals: (a) to establish whether, based on observed responses, it can be decided that an underlying latent variable is continuous or…
Descriptors: Sample Size, Maximum Likelihood Statistics, Models, Responses
Yuan, Ke-Hai; Hayashi, Kentaro – Psychometrika, 2005
Data in social and behavioral sciences are often hierarchically organized. Special statistical procedures that take into account the dependence of such observations have been developed. Among procedures for 2-level covariance structure analysis, Muthen's maximum likelihood (MUML) has the advantage of easier computation and faster convergence. When…
Descriptors: Sample Size, Behavioral Sciences, Maximum Likelihood Statistics, Statistical Analysis
Wang, Lin; And Others – 1995
Research in structured equation modeling (SEM) suggests that nonnormal data will invalidate chi-square tests and produce erroneous standard errors. However, much remains unknown about the extent to which, and the conditions under which nonnormal data can affect SEM application, especially when excessive skewness and kurtosis are present in data.…
Descriptors: Behavior Patterns, Chi Square, Children, Error of Measurement

Peer reviewed
Direct link
