NotesFAQContact Us
Collection
Advanced
Search Tips
Education Level
Location
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 24 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models
Peer reviewed Peer reviewed
Direct linkDirect link
Paul A. Jewsbury; Matthew S. Johnson – Large-scale Assessments in Education, 2025
The standard methodology for many large-scale assessments in education involves regressing latent variables on numerous contextual variables to estimate proficiency distributions. To reduce the number of contextual variables used in the regression and improve estimation, we propose and evaluate principal component analysis on the covariance matrix…
Descriptors: Factor Analysis, Matrices, Regression (Statistics), Educational Assessment
Peer reviewed Peer reviewed
Direct linkDirect link
Anthony Gambino – Society for Research on Educational Effectiveness, 2021
Analysis of symmetrically predicted endogenous subgroups (ASPES) is an approach to assessing heterogeneity in an ITT effect from a randomized experiment when an intermediate variable (one that is measured after random assignment and before outcomes) is hypothesized to be related to the ITT effect, but is only measured in one group. For example,…
Descriptors: Randomized Controlled Trials, Prediction, Program Evaluation, Credibility
Peer reviewed Peer reviewed
Dongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Clare Baek; Tenzin Doleck – Knowledge Management & E-Learning, 2024
We examined how Learning Analytics literature represents participants from diverse societies by comparing the studies published with samples from WEIRD (Western, Industrialized, Rich, Democratic) nations versus non-WEIRD nations. By analyzing the Learning Analytics studies published during 2015-2019 (N = 360), we found that most of the studies…
Descriptors: Learning Analytics, Educational Research, Sample Size, Literature Reviews
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size
Ben Stenhaug; Ben Domingue – Grantee Submission, 2022
The fit of an item response model is typically conceptualized as whether a given model could have generated the data. We advocate for an alternative view of fit, "predictive fit", based on the model's ability to predict new data. We derive two predictive fit metrics for item response models that assess how well an estimated item response…
Descriptors: Goodness of Fit, Item Response Theory, Prediction, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Spencer, Neil H.; Lay, Margaret; Kevan de Lopez, Lindsey – International Journal of Social Research Methodology, 2017
When undertaking quantitative hypothesis testing, social researchers need to decide whether the data with which they are working is suitable for parametric analyses to be used. When considering the relevant assumptions they can examine graphs and summary statistics but the decision making process is subjective and must also take into account the…
Descriptors: Evaluation Methods, Decision Making, Hypothesis Testing, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Descriptors: Bayesian Statistics, Structural Equation Models, Computation, Social Science Research
Peer reviewed Peer reviewed
Direct linkDirect link
Peck, Laura R. – American Journal of Evaluation, 2015
Several analytic strategies exist for opening up the "black box" to reveal more about what drives policy and program impacts. This article focuses on one of these strategies: the Analysis of Symmetrically-Predicted Endogenous Subgroups (ASPES). ASPES uses exogenous baseline data to identify endogenously-defined subgroups, keeping the…
Descriptors: Program Evaluation, Credibility, Prediction, Sample Size
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yu, Chong Ho; Douglas, Samantha; Lee, Anna; An, Min – Practical Assessment, Research & Evaluation, 2016
This paper aims to illustrate how data visualization could be utilized to identify errors prior to modeling, using an example with multi-dimensional item response theory (MIRT). MIRT combines item response theory and factor analysis to identify a psychometric model that investigates two or more latent traits. While it may seem convenient to…
Descriptors: Visualization, Item Response Theory, Sample Size, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Louie, Josephine; Rhoads, Christopher; Mark, June – American Journal of Evaluation, 2016
Interest in the regression discontinuity (RD) design as an alternative to randomized control trials (RCTs) has grown in recent years. There is little practical guidance, however, on conditions that would lead to a successful RD evaluation or the utility of studies with underpowered RD designs. This article describes the use of RD design to…
Descriptors: Regression (Statistics), Program Evaluation, Algebra, Supplementary Education
Peer reviewed Peer reviewed
Direct linkDirect link
McNeish, Daniel; Harring, Jeffrey R. – Educational and Psychological Measurement, 2017
To date, small sample problems with latent growth models (LGMs) have not received the amount of attention in the literature as related mixed-effect models (MEMs). Although many models can be interchangeably framed as a LGM or a MEM, LGMs uniquely provide criteria to assess global data-model fit. However, previous studies have demonstrated poor…
Descriptors: Growth Models, Goodness of Fit, Error Correction, Sampling
Orcan, Fatih – ProQuest LLC, 2013
Parceling is referred to as a procedure for computing sums or average scores across multiple items. Parcels instead of individual items are then used as indicators of latent factors in the structural equation modeling analysis (Bandalos 2002, 2008; Little et al., 2002; Yang, Nay, & Hoyle, 2010). Item parceling may be applied to alleviate some…
Descriptors: Structural Equation Models, Evaluation Methods, Simulation, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, HwaYoung; Beretvas, S. Natasha – Educational and Psychological Measurement, 2014
Conventional differential item functioning (DIF) detection methods (e.g., the Mantel-Haenszel test) can be used to detect DIF only across observed groups, such as gender or ethnicity. However, research has found that DIF is not typically fully explained by an observed variable. True sources of DIF may include unobserved, latent variables, such as…
Descriptors: Item Analysis, Factor Structure, Bayesian Statistics, Goodness of Fit
Previous Page | Next Page ยป
Pages: 1  |  2