Publication Date
| In 2026 | 0 |
| Since 2025 | 2 |
| Since 2022 (last 5 years) | 2 |
| Since 2017 (last 10 years) | 2 |
| Since 2007 (last 20 years) | 10 |
Descriptor
| Correlation | 13 |
| Evaluation Methods | 13 |
| Matrices | 13 |
| Factor Analysis | 7 |
| Statistical Analysis | 7 |
| Research Methodology | 5 |
| Data Analysis | 4 |
| Models | 4 |
| Simulation | 4 |
| Factor Structure | 3 |
| Measurement Techniques | 3 |
| More ▼ | |
Source
Author
| Bandalos, Deborah | 1 |
| Bechger, Timo M. | 1 |
| Beretvas, S. Natasha | 1 |
| Cho, Sun-Joo | 1 |
| Coleman, S. C. | 1 |
| Collier, Wesley | 1 |
| Furlow, Carolyn F. | 1 |
| Hafdahl, Adam R. | 1 |
| Hanik, Bruce | 1 |
| Lei, Wu | 1 |
| Li, Feiming | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 10 |
| Reports - Evaluative | 5 |
| Reports - Descriptive | 3 |
| Reports - Research | 3 |
| Collected Works - Proceedings | 1 |
| Dissertations/Theses -… | 1 |
| Guides - Non-Classroom | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
| Elementary Education | 1 |
| Grade 6 | 1 |
| Higher Education | 1 |
| Intermediate Grades | 1 |
| Junior High Schools | 1 |
| Middle Schools | 1 |
| Postsecondary Education | 1 |
| Secondary Education | 1 |
Audience
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
Yan Xia; Xinchang Zhou – Educational and Psychological Measurement, 2025
Parallel analysis has been considered one of the most accurate methods for determining the number of factors in factor analysis. One major advantage of parallel analysis over traditional factor retention methods (e.g., Kaiser's rule) is that it addresses the sampling variability of eigenvalues obtained from the identity matrix, representing the…
Descriptors: Factor Analysis, Statistical Analysis, Evaluation Methods, Sampling
Paul A. Jewsbury; Matthew S. Johnson – Large-scale Assessments in Education, 2025
The standard methodology for many large-scale assessments in education involves regressing latent variables on numerous contextual variables to estimate proficiency distributions. To reduce the number of contextual variables used in the regression and improve estimation, we propose and evaluate principal component analysis on the covariance matrix…
Descriptors: Factor Analysis, Matrices, Regression (Statistics), Educational Assessment
Shaffer, David Williamson; Collier, Wesley; Ruis, A. R. – Journal of Learning Analytics, 2016
This paper provides a tutorial on epistemic network analysis (ENA), a novel method for identifying and quantifying connections among elements in coded data and representing them in dynamic network models. Such models illustrate the structure of connections and measure the strength of association among elements in a network, and they quantify…
Descriptors: Epistemology, Network Analysis, Data Analysis, Coding
Lei, Wu; Qing, Fang; Zhou, Jin – International Journal of Distance Education Technologies, 2016
There are usually limited user evaluation of resources on a recommender system, which caused an extremely sparse user rating matrix, and this greatly reduce the accuracy of personalized recommendation, especially for new users or new items. This paper presents a recommendation method based on rating prediction using causal association rules.…
Descriptors: Causal Models, Attribution Theory, Correlation, Evaluation Methods
Liu, Yan; Zumbo, Bruno D. – Educational and Psychological Measurement, 2012
There is a lack of research on the effects of outliers on the decisions about the number of factors to retain in an exploratory factor analysis, especially for outliers arising from unintended and unknowingly included subpopulations. The purpose of the present research was to investigate how outliers from an unintended and unknowingly included…
Descriptors: Factor Analysis, Factor Structure, Evaluation Research, Evaluation Methods
Cho, Sun-Joo; Li, Feiming; Bandalos, Deborah – Educational and Psychological Measurement, 2009
The purpose of this study was to investigate the application of the parallel analysis (PA) method for choosing the number of factors in component analysis for situations in which data are dichotomous or ordinal. Although polychoric correlations are sometimes used as input for component analyses, the random data matrices generated for use in PA…
Descriptors: Correlation, Evaluation Methods, Data Analysis, Matrices
Victor Snipes Swaim – ProQuest LLC, 2009
Numerous procedures have been suggested for determining the number of factors to retain in factor analysis. However, previous studies have focused on comparing methods using normal data sets. This study had two phases. The first phase explored the Kaiser method, Scree test, Bartlett's chi-square test, Minimum Average Partial (1976&2000),…
Descriptors: Factor Analysis, Factor Structure, Maximum Likelihood Statistics, Evaluation Methods
Stellefson, Michael; Hanik, Bruce – Online Submission, 2008
When conducting an exploratory factor analysis, the decision regarding the number of factors to retain following factor extraction is one that the researcher should consider very carefully, as the decision can have a dramatic effect on results. Although there are numerous strategies that can and should be utilized when making this decision,…
Descriptors: Factor Analysis, Factor Structure, Research Methodology, Evaluation Methods
Hafdahl, Adam R. – Journal of Educational and Behavioral Statistics, 2007
The originally proposed multivariate meta-analysis approach for correlation matrices--analyze Pearson correlations, with each study's observed correlations replacing their population counterparts in its conditional-covariance matrix--performs poorly. Two refinements are considered: Analyze Fisher Z-transformed correlations, and substitute better…
Descriptors: Monte Carlo Methods, Correlation, Meta Analysis, Matrices
Peer reviewedReichardt, Charles S.; Coleman, S. C. – Multivariate Behavioral Research, 1995
The criteria for assessing convergent and discriminant validity proposed by D. T. Campbell and D. W. Fiske (1959) are shown to be inadequate for either the additive or multiplicative structures of data in a multitrait-multimethod matrix. Model-specific criteria are more promising for assessing convergent and discriminant validity. (Author/SLD)
Descriptors: Correlation, Criteria, Evaluation Methods, Matrices
Beretvas, S. Natasha; Furlow, Carolyn F. – Structural Equation Modeling: A Multidisciplinary Journal, 2006
Meta-analytic structural equation modeling (MA-SEM) is increasingly being used to assess model-fit for variables' interrelations synthesized across studies. MA-SEM researchers have analyzed synthesized correlation matrices using structural equation modeling (SEM) estimation that is designed for covariance matrices. This can produce incorrect…
Descriptors: Structural Equation Models, Matrices, Statistical Analysis, Synthesis
Bechger, Timo M.; Maris, Gunter – Psicologica: International Journal of Methodology and Experimental Psychology, 2004
This paper is about the structural equation modelling of quantitative measures that are obtained from a multiple facet design. A facet is simply a set consisting of a finite number of elements. It is assumed that measures are obtained by combining each element of each facet. Methods and traits are two such facets, and a multitrait-multimethod…
Descriptors: Structural Equation Models, Multitrait Multimethod Techniques, Schematic Studies, Correlation
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection

Direct link
