NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Boik, Robert J. – Journal of Educational and Behavioral Statistics, 1997
An analysis of repeated measures designs is proposed that uses an empirical Bayes estimator of the covariance matrix. The proposed analysis behaves like a univariate analysis when sample size is small or sphericity nearly satisfied, but behaves like multivariate analysis when sample size is large or sphericity is strongly violated. (SLD)
Descriptors: Bayesian Statistics, Estimation (Mathematics), Multivariate Analysis, Research Design
Peer reviewed Peer reviewed
Seltzer, Michael H.; And Others – Journal of Educational and Behavioral Statistics, 1996
The Gibbs sampling algorithms presented by M. H. Seltzer (1993) are fully generalized to a broad range of settings in which vectors of random regression parameters in the hierarchical model are assumed multivariate normally or multivariate "t" distributed across groups. The use of a fully Bayesian approach is discussed. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Multivariate Analysis
Peer reviewed Peer reviewed
Thum, Yeow Meng – Journal of Educational and Behavioral Statistics, 1997
A class of two-stage models is developed to accommodate three common characteristics of behavioral data: (1) its multivariate nature; (2) the typical small sample size; and (3) the possibility of missing observations. The model, as illustrated, permits estimation of the full spectrum of plausible measurement error structures. (SLD)
Descriptors: Bayesian Statistics, Behavior Patterns, Estimation (Mathematics), Maximum Likelihood Statistics
Peer reviewed Peer reviewed
Woodbury, Max A.; Manton, Kenneth G. – Multivariate Behavioral Research, 1991
An empirical Bayes-maximum likelihood estimation procedure is presented for the application of fuzzy partition models in describing high dimensional discrete response data. The model describes individuals in terms of partial membership in multiple latent categories that represent bounded discrete spaces. (SLD)
Descriptors: Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics), Mathematical Models