Descriptor
| Algorithms | 14 |
| Bayesian Statistics | 14 |
| Estimation (Mathematics) | 14 |
| Mathematical Models | 8 |
| Maximum Likelihood Statistics | 7 |
| Latent Trait Theory | 5 |
| Test Items | 5 |
| Equations (Mathematics) | 3 |
| Sampling | 3 |
| Simulation | 3 |
| Error of Measurement | 2 |
| More ▼ | |
Source
| Psychometrika | 4 |
| Applied Psychological… | 3 |
| Journal of Educational… | 1 |
| Journal of Educational and… | 1 |
| Psychological Review | 1 |
Author
| Tsutakawa, Robert K. | 3 |
| Lin, Hsin Ying | 2 |
| Mislevy, Robert J. | 2 |
| Albert, James H. | 1 |
| Arminger, Gerhard | 1 |
| Bock, R. Darrell | 1 |
| Gigerenzer, Gerd | 1 |
| Hoffrage, Ulrich | 1 |
| Jo, See-Heyon | 1 |
| Kim, Seock-Ho | 1 |
| Muthen, Bengt O. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 10 |
| Reports - Research | 7 |
| Reports - Evaluative | 6 |
| Reports - Descriptive | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
| ACT Assessment | 1 |
What Works Clearinghouse Rating
Peer reviewedArminger, Gerhard; Muthen, Bengt O. – Psychometrika, 1998
Nonlinear latent variable models are specified that include quadratic forms and interactions of latent regressor variable as special cases. To estimate the parameters, the models are put in a Bayesian framework with conjugate priors for the parameters. The proposed estimation methods are illustrated by two simulation studies. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Mathematical Models
Peer reviewedZeng, Lingjia – Applied Psychological Measurement, 1997
Proposes a marginal Bayesian estimation procedure to improve item parameter estimates for the three parameter logistic model. Computer simulation suggests that implementing the marginal Bayesian estimation algorithm with four-parameter beta prior distributions and then updating the priors with empirical means of updated intermediate estimates can…
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Statistical Distributions
Peer reviewedRigdon, Steven E.; Tsutakawa, Robert K. – Psychometrika, 1983
Latent trait test models for responses to dichotomously scored items are considered from the point of view of parameter estimation using a Bayesian statistical approach and the EM estimation algorithm. An example using the Rasch model is presented. (Author/JKS)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory
Peer reviewedSeltzer, Michael H.; And Others – Journal of Educational and Behavioral Statistics, 1996
The Gibbs sampling algorithms presented by M. H. Seltzer (1993) are fully generalized to a broad range of settings in which vectors of random regression parameters in the hierarchical model are assumed multivariate normally or multivariate "t" distributed across groups. The use of a fully Bayesian approach is discussed. (SLD)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Multivariate Analysis
Peer reviewedGigerenzer, Gerd; Hoffrage, Ulrich – Psychological Review, 1995
It is shown that Bayesian algorithms are computationally simpler in frequency formats than in the probability formats used in previous research. Analysis of several thousand solutions to Bayesian problems showed that when information was presented in frequency formats, statistically naive participants derived up to 50% of inferences by Bayesian…
Descriptors: Algorithms, Bayesian Statistics, Computation, Estimation (Mathematics)
Peer reviewedTsutakawa, Robert K.; Lin, Hsin Ying – Psychometrika, 1986
Item response curves for a set of binary responses are studied from a Bayesian viewpoint of estimating the item parameters. For the two-parameter logistic model with normally distributed ability, restricted bivariate beta priors are used to illustrate the computation of the posterior mode via the EM algorithm. (Author/LMO)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory
Tsutakawa, Robert K.; Lin, Hsin Ying – 1984
Item response curves for a set of binary responses are studied from a Bayesian viewpoint of estimating the item parameters. For the two-parameter logistic model with normally distributed ability, restricted bivariate beta priors are used to illustrate the computation of the posterior mode via the EM algorithm. The procedure is illustrated by data…
Descriptors: Algorithms, Bayesian Statistics, College Entrance Examinations, Estimation (Mathematics)
Peer reviewedMislevy, Robert J. – Psychometrika, 1986
This article describes a Bayesian framework for estimation in item response models, with two-stage distributions on both item and examinee populations. Strategies for point and interval estimation are discussed, and a general procedure based on the EM algorithm is presented. (Author/LMO)
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory
Peer reviewedBock, R. Darrell; And Others – Applied Psychological Measurement, 1988
A method of item factor analysis is described, which is based on Thurstone's multiple-factor model and implemented by marginal maximum likelihood estimation and the EM algorithm. Also assessed are the statistical significance of successive factors added to the model, provisions for guessing and omitted items, and Bayes constraints. (TJH)
Descriptors: Algorithms, Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics)
Jo, See-Heyon – 1995
The question of how to analyze unbalanced hierarchical data generated from structural equation models has been a common problem for researchers and analysts. Among difficulties plaguing statistical modeling are estimation bias due to measurement error and the estimation of the effects of the individual's hierarchical social milieu. This paper…
Descriptors: Algorithms, Bayesian Statistics, Equations (Mathematics), Error of Measurement
Mislevy, Robert J. – 1985
Simultaneous estimation of many parameters can often be improved, sometimes dramatically so, if it is reasonable to consider one or more subsets of parameters as exchangeable members of corresponding populations. While each observation may provide limited information about the parameters it is modeled directly in terms of, it also contributes…
Descriptors: Algorithms, Bayesian Statistics, Estimation (Mathematics), Latent Trait Theory
Peer reviewedKim, Seock-Ho; And Others – Applied Psychological Measurement, 1994
Type I error rates of F. M. Lord's chi square test for differential item functioning were investigated using Monte Carlo simulations with marginal maximum likelihood estimation and marginal Bayesian estimation algorithms. Lord's chi square did not provide useful Type I error control for the three-parameter logistic model at these sample sizes.…
Descriptors: Algorithms, Bayesian Statistics, Chi Square, Error of Measurement
Peer reviewedAlbert, James H. – Journal of Educational Statistics, 1992
Estimating item parameters from a two-parameter normal ogive model is considered using Gibbs sampling to simulate draws from the joint posterior distribution of ability and item parameters. The method gives marginal posterior density estimates for any parameter of interest, as illustrated using data from a 33-item mathematics placement…
Descriptors: Algorithms, Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics)
Shermis, Mark D.; And Others – 1992
The reliability of four branching algorithms commonly used in computer adaptive testing (CAT) was examined. These algorithms were: (1) maximum likelihood (MLE); (2) Bayesian; (3) modal Bayesian; and (4) crossover. Sixty-eight undergraduate college students were randomly assigned to one of the four conditions using the HyperCard-based CAT program,…
Descriptors: Adaptive Testing, Algorithms, Bayesian Statistics, Comparative Analysis


