NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 12 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2025
Consider the conventional multilevel model Y=C[gamma]+Zu+e where [gamma] represents fixed effects and (u,e) are multivariate normal random effects. The continuous outcomes Y and covariates C are fully observed with a subset Z of C. The parameters are [theta]=([gamma],var(u),var(e)). Dempster, Rubin and Tsutakawa (1981) framed the estimation as a…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Sampling, Error of Measurement
Yongyun Shin; Stephen W. Raudenbush – Grantee Submission, 2023
We consider two-level models where a continuous response R and continuous covariates C are assumed missing at random. Inferences based on maximum likelihood or Bayes are routinely made by estimating their joint normal distribution from observed data R[subscript obs] and C[subscript obs]. However, if the model for R given C includes random…
Descriptors: Maximum Likelihood Statistics, Hierarchical Linear Modeling, Error of Measurement, Statistical Distributions
Peer reviewed Peer reviewed
Direct linkDirect link
Chang, Wanchen; Pituch, Keenan A. – Journal of Experimental Education, 2019
When data for multiple outcomes are collected in a multilevel design, researchers can select a univariate or multivariate analysis to examine group-mean differences. When correlated outcomes are incomplete, a multivariate multilevel model (MVMM) may provide greater power than univariate multilevel models (MLMs). For a two-group multilevel design…
Descriptors: Hierarchical Linear Modeling, Multivariate Analysis, Research Problems, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Bolin, Jocelyn H.; Finch, W. Holmes; Stenger, Rachel – Educational and Psychological Measurement, 2019
Multilevel data are a reality for many disciplines. Currently, although multiple options exist for the treatment of multilevel data, most disciplines strictly adhere to one method for multilevel data regardless of the specific research design circumstances. The purpose of this Monte Carlo simulation study is to compare several methods for the…
Descriptors: Hierarchical Linear Modeling, Computation, Statistical Analysis, Maximum Likelihood Statistics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Finch, Holmes – Psicologica: International Journal of Methodology and Experimental Psychology, 2017
Multilevel models (MLMs) have proven themselves to be very useful in social science research, as data from a variety of sources is sampled such that individuals at level-1 are nested within clusters such as schools, hospitals, counseling centers, and business entities at level-2. MLMs using restricted maximum likelihood estimation (REML) provide…
Descriptors: Hierarchical Linear Modeling, Comparative Analysis, Computation, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Arens, A. Katrin; Morin, Alexandre J. S. – American Educational Research Journal, 2017
This study illustrates an integrative psychometric framework to investigate two sources of construct-relevant multidimensionality in answers to the Self-Perception Profile for Children (SPPC). Using a sample of 2,353 German students attending Grades 3 to 6, we contrasted: (a) first-order versus hierarchical and bifactor models to investigate…
Descriptors: Self Concept, Structural Equation Models, Factor Analysis, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Ji Seung; Cai, Li – Journal of Educational and Behavioral Statistics, 2014
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM). Results indicate that the MH-RM algorithm can produce estimates and standard…
Descriptors: Computation, Hierarchical Linear Modeling, Mathematics, Context Effect
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yang, Ji Seung; Cai, Li – Grantee Submission, 2014
The main purpose of this study is to improve estimation efficiency in obtaining maximum marginal likelihood estimates of contextual effects in the framework of nonlinear multilevel latent variable model by adopting the Metropolis-Hastings Robbins-Monro algorithm (MH-RM; Cai, 2008, 2010a, 2010b). Results indicate that the MH-RM algorithm can…
Descriptors: Computation, Hierarchical Linear Modeling, Mathematics, Context Effect
Peer reviewed Peer reviewed
Direct linkDirect link
Moeyaert, Mariola; Ugille, Maaike; Ferron, John M.; Beretvas, S. Natasha; Van den Noortgate, Wim – Journal of Experimental Education, 2014
One approach for combining single-case data involves use of multilevel modeling. In this article, the authors use a Monte Carlo simulation study to inform applied researchers under which realistic conditions the three-level model is appropriate. The authors vary the value of the immediate treatment effect and the treatment's effect on the time…
Descriptors: Hierarchical Linear Modeling, Monte Carlo Methods, Case Studies, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Aydin, Burak; Leite, Walter L.; Algina, James – Educational and Psychological Measurement, 2016
We investigated methods of including covariates in two-level models for cluster randomized trials to increase power to detect the treatment effect. We compared multilevel models that included either an observed cluster mean or a latent cluster mean as a covariate, as well as the effect of including Level 1 deviation scores in the model. A Monte…
Descriptors: Error of Measurement, Predictor Variables, Randomized Controlled Trials, Experimental Groups
Yang, Ji Seung – ProQuest LLC, 2012
Nonlinear multilevel latent variable modeling has been suggested as an alternative to traditional hierarchical linear modeling to more properly handle measurement error and sampling error issues in contextual effects modeling. However, a nonlinear multilevel latent variable model requires significant computational effort because the estimation…
Descriptors: Hierarchical Linear Modeling, Computation, Maximum Likelihood Statistics, Mathematics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Deping, Li; Oranje, Andreas – ETS Research Report Series, 2006
A hierarchical latent regression model is suggested to estimate nested and nonnested relationships in complex samples such as found in the National Assessment of Educational Progress (NAEP). The proposed model aims at improving both parameters and variance estimates via a two-level hierarchical linear model. This model falls naturally within the…
Descriptors: Hierarchical Linear Modeling, Computation, Measurement, Regression (Statistics)