NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 66 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Muntasir Hoq; Ananya Rao; Reisha Jaishankar; Krish Piryani; Nithya Janapati; Jessica Vandenberg; Bradford Mott; Narges Norouzi; James Lester; Bita Akram – International Educational Data Mining Society, 2025
In Computer Science (CS) education, understanding factors contributing to students' programming difficulties is crucial for effective learning support. By identifying specific issues students face, educators can provide targeted assistance to help them overcome obstacles and improve learning outcomes. While identifying sources of struggle, such as…
Descriptors: Computer Science Education, Programming, Misconceptions, Error Patterns
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rubén Buitrago; Jesús Salinas; Oscar Boude – Knowledge Management & E-Learning, 2024
Design patterns for learning are about articulating, testing and sharing the principles of problem solving in the educational context. In this way, multiple patterns are developed to solve common problems, described in various pattern language formats. Therefore, this work is about characterizing and establishing functional relationships between…
Descriptors: Delphi Technique, Programming Languages, Programming, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Anna Rechtácková; Radek Pelánek; Tomáš Effenberger – ACM Transactions on Computing Education, 2025
Code quality is a critical aspect of programming, as high-quality code is easier to maintain, and code maintenance constitutes the majority of software costs. Consequently, code quality should be emphasized in programming education. While previous research has identified numerous code quality defects commonly made by students, the current state…
Descriptors: Programming, Computer Science Education, Error Patterns, Automation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yunsung Kim; Jadon Geathers; Chris Piech – International Educational Data Mining Society, 2024
"Stochastic programs," which are programs that produce probabilistic output, are a pivotal paradigm in various areas of CS education from introductory programming to machine learning and data science. Despite their importance, the problem of automatically grading such programs remains surprisingly unexplored. In this paper, we formalize…
Descriptors: Grading, Automation, Accuracy, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Ronit Shmallo; Adi Katz – Computer Science Education, 2024
Background and Context: Gender research shows that women are better at reading comprehension. Other studies indicate a lower tendency in women to choose STEM professions. Since data modeling requires reading skills and also belongs in the areas of information systems and computer science (STEM professions), these findings provoked our curiosity.…
Descriptors: Gender Differences, Transfer of Training, Databases, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jahnke, Maximilian; Höppner, Frank – International Educational Data Mining Society, 2022
The value of an instructor is that she exactly recognizes what the learner is struggling with and provides constructive feedback straight to the point. This work aims at a step towards this type of feedback in the context of an introductory programming course, where students perform program execution tracing to align their understanding of Java…
Descriptors: Programming, Coding, Computer Science Education, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Marwan, Samiha; Akram, Bita; Barnes, Tiffany; Price, Thomas W. – IEEE Transactions on Learning Technologies, 2022
Theories on learning show that formative feedback that is immediate, specific, corrective, and positive is essential to improve novice students' motivation and learning. However, most prior work on programming feedback focuses on highlighting student's mistakes, or detecting failed test cases after they submit a solution. In this article, we…
Descriptors: Feedback (Response), Formative Evaluation, Programming, Coding
Peer reviewed Peer reviewed
Direct linkDirect link
Leonard J. Mselle – Discover Education, 2025
In this paper the "Memory Transfer Language" program visualization (MTL PV) technique is combined with "constructivism" ("conceptual contraposition and colloquy") and "reversibility" to evolve a new approach for instructional design for teaching and learning introductory programming. A sample of 1,364…
Descriptors: Introductory Courses, Computer Science Education, Constructivism (Learning), Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Miedema, Daphne; Fletcher, George; Aivaloglou, Efthimia – ACM Transactions on Computing Education, 2023
Prior studies in the Computer Science education literature have illustrated that novices make many mistakes in composing SQL queries. Query formulation proves to be difficult for students. Only recently, some headway was made towards understanding why SQL leads to so many mistakes, by uncovering student misconceptions. In this article, we shed new…
Descriptors: Computer Science Education, Novices, Misconceptions, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Rahel Schmid; Robbert Smit; Nicolas Robin; Alexander Strahl – British Journal of Educational Psychology, 2025
Background: Students make many errors in visual programming. In order to learn from these, it is important that students regulate their emotions and view errors as learning opportunities. Aims: This study aimed to explore to what extent momentary emotions, specifically enjoyment, anxiety and boredom, as well as the error learning orientation of…
Descriptors: Psychological Patterns, Emotional Response, Learning Processes, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Ben-Yaacov, Anat; Hershkovitz, Arnon – Journal of Educational Computing Research, 2023
Block programming has been suggested as a way of engaging young learners with the foundations of programming and computational thinking in a syntax-free manner. Indeed, syntax errors--which form one of two broad categories of errors in programming, the other one being logic errors--are omitted while block programming. However, this does not mean…
Descriptors: Programming, Computation, Thinking Skills, Error Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Weisberg, Steven M.; Schinazi, Victor R.; Ferrario, Andrea; Newcombe, Nora S. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2023
Relying on shared tasks and stimuli to conduct research can enhance the replicability of findings and allow a community of researchers to collect large data sets across multiple experiments. This approach is particularly relevant for experiments in spatial navigation, which often require the development of unfamiliar large-scale virtual…
Descriptors: Programming, Error Patterns, Computer Simulation, Spatial Ability
Peer reviewed Peer reviewed
Direct linkDirect link
Sirinda Palahan – IEEE Transactions on Learning Technologies, 2025
The rise of online programming education has necessitated more effective personalized interactions, a gap that PythonPal aims to fill through its innovative learning system integrated with a chatbot. This research delves into PythonPal's potential to enhance the online learning experience, especially in contexts with high student-to-teacher ratios…
Descriptors: Programming, Computer Science Education, Artificial Intelligence, Computer Mediated Communication
Peer reviewed Peer reviewed
Direct linkDirect link
Costello, Eamon; Johnston, Keith; Wade, Vincent – Interactive Learning Environments, 2023
This research investigated how the bug tracker database of the Virtual Learning Environment (VLE) Moodle is developed as an application of crowd work. The bug tracker is used by software developers, who write and maintain Moodle's code, but also by a wider public world of ordinary Moodle users who can report bugs. Despite many studies of the…
Descriptors: Electronic Learning, Educational Technology, Computer Software, Cooperation
Peer reviewed Peer reviewed
Direct linkDirect link
Guozhu Ding; Xiangyi Shi; Shan Li – Education and Information Technologies, 2024
In this study, we developed a classification system of programming errors based on the historical data of 680,540 programming records collected on the Online Judge platform. The classification system described six types of programming errors (i.e., syntax, logical, type, writing, misunderstanding, and runtime errors) and their connections with…
Descriptors: Programming, Computer Science Education, Classification, Graphs
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5