NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 16 results Save | Export
Kenneth A. Frank; Qinyun Lin; Spiro Maroulis – Grantee Submission, 2023
Beginning with debates about the effects of smoking on lung cancer, sensitivity analyses characterizing the hypothetical unobserved conditions that can alter statistical inferences have had profound impacts on public policy. One of the most ascendant techniques for sensitivity analysis is Oster's (2019) coefficient of proportionality, which…
Descriptors: Computation, Statistical Analysis, Statistical Inference, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Chunhua Cao; Xinya Liang – Structural Equation Modeling: A Multidisciplinary Journal, 2022
Exploratory structural equation modeling (ESEM) allows for the estimation of all cross-loadings, which leads to the number of parameters estimated substantially greater than that in conventional SEM. This study examined the sensitivity of fit measures (CFI, RMSEA, AIC, BIC, SaBIC, LRT) to measurement noninvariance in ESEM. Results suggested that…
Descriptors: Structural Equation Models, Error of Measurement, Computation, Goodness of Fit
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Wei; Konstantopoulos, Spyros – Educational and Psychological Measurement, 2023
Cluster randomized control trials often incorporate a longitudinal component where, for example, students are followed over time and student outcomes are measured repeatedly. Besides examining how intervention effects induce changes in outcomes, researchers are sometimes also interested in exploring whether intervention effects on outcomes are…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Longitudinal Studies, Hierarchical Linear Modeling
Xu, Ziqian; Hai, Jiarui; Yang, Yutong; Zhang, Zhiyong – Grantee Submission, 2022
Social network data often contain missing values because of the sensitive nature of the information collected and the dependency among the network actors. As a response, network imputation methods including simple ones constructed from network structural characteristics and more complicated model-based ones have been developed. Although past…
Descriptors: Social Networks, Network Analysis, Data Analysis, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Trafimow, David – Educational and Psychological Measurement, 2018
Because error variance alternatively can be considered to be the sum of systematic variance associated with unknown variables and randomness, a tripartite assumption is proposed that total variance in the dependent variable can be partitioned into three variance components. These are variance in the dependent variable that is explained by the…
Descriptors: Statistical Analysis, Correlation, Experiments, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Nicewander, W. Alan – Educational and Psychological Measurement, 2018
Spearman's correction for attenuation (measurement error) corrects a correlation coefficient for measurement errors in either-or-both of two variables, and follows from the assumptions of classical test theory. Spearman's equation removes all measurement error from a correlation coefficient which translates into "increasing the reliability of…
Descriptors: Error of Measurement, Correlation, Sample Size, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Muth, Chelsea; Bales, Karen L.; Hinde, Katie; Maninger, Nicole; Mendoza, Sally P.; Ferrer, Emilio – Educational and Psychological Measurement, 2016
Unavoidable sample size issues beset psychological research that involves scarce populations or costly laboratory procedures. When incorporating longitudinal designs these samples are further reduced by traditional modeling techniques, which perform listwise deletion for any instance of missing data. Moreover, these techniques are limited in their…
Descriptors: Sample Size, Psychological Studies, Models, Statistical Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Li, Wei; Konstantopoulos, Spyros – Educational and Psychological Measurement, 2017
Field experiments in education frequently assign entire groups such as schools to treatment or control conditions. These experiments incorporate sometimes a longitudinal component where for example students are followed over time to assess differences in the average rate of linear change, or rate of acceleration. In this study, we provide methods…
Descriptors: Educational Experiments, Field Studies, Models, Randomized Controlled Trials
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen – Journal of Experimental Education, 2015
Analysis of variance is one of the most frequently used statistical analyses in the behavioral, educational, and social sciences, and special attention has been paid to the selection and use of an appropriate effect size measure of association in analysis of variance. This article presents the sample size procedures for precise interval estimation…
Descriptors: Statistical Analysis, Sample Size, Computation, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Schoeneberger, Jason A. – Journal of Experimental Education, 2016
The design of research studies utilizing binary multilevel models must necessarily incorporate knowledge of multiple factors, including estimation method, variance component size, or number of predictors, in addition to sample sizes. This Monte Carlo study examined the performance of random effect binary outcome multilevel models under varying…
Descriptors: Sample Size, Models, Computation, Predictor Variables
Peer reviewed Peer reviewed
Direct linkDirect link
Shieh, Gwowen; Jan, Show-Li – Journal of Experimental Education, 2013
The authors examined 2 approaches for determining the required sample size of Welch's test for detecting equality of means when the greatest difference between any 2 group means is given. It is shown that the actual power obtained with the sample size of the suggested approach is consistently at least as great as the nominal power. However, the…
Descriptors: Sampling, Statistical Analysis, Computation, Research Methodology
Livingston, Samuel A.; Lewis, Charles – Educational Testing Service, 2009
This report proposes an empirical Bayes approach to the problem of equating scores on test forms taken by very small numbers of test takers. The equated score is estimated separately at each score point, making it unnecessary to model either the score distribution or the equating transformation. Prior information comes from equatings of other…
Descriptors: Test Length, Equated Scores, Bayesian Statistics, Sample Size
Peer reviewed Peer reviewed
Direct linkDirect link
Sun, Ronghua; Willson, Victor L. – Structural Equation Modeling: A Multidisciplinary Journal, 2009
The effects of misspecifying intercept-covariate interactions in a 4 time-point latent growth model were the focus of this investigation. The investigation was motivated by school growth studies in which students' entry-level skills may affect their rate of growth. We studied the latent interaction of intercept and a covariate in predicting growth…
Descriptors: Investigations, Sample Size, Interaction, Computation
Peer reviewed Peer reviewed
Direct linkDirect link
Wanstrom, Linda – Multivariate Behavioral Research, 2009
Second-order latent growth curve models (S. C. Duncan & Duncan, 1996; McArdle, 1988) can be used to study group differences in change in latent constructs. We give exact formulas for the covariance matrix of the parameter estimates and an algebraic expression for the estimation of slope differences. Formulas for calculations of the required sample…
Descriptors: Sample Size, Effect Size, Mathematical Formulas, Computation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Jance, Marsha; Thomopoulos, Nick – American Journal of Business Education, 2009
The extreme interval values and statistics (expected value, median, mode, standard deviation, and coefficient of variation) for the smallest (min) and largest (max) values of exponentially distributed variables with parameter ? = 1 are examined for different observation (sample) sizes. An extreme interval value g[subscript a] is defined as a…
Descriptors: Intervals, Statistics, Predictor Variables, Sample Size
Previous Page | Next Page ยป
Pages: 1  |  2