Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 0 |
| Since 2007 (last 20 years) | 2 |
Descriptor
Source
| Multivariate Behavioral… | 7 |
Author
| Bandalos, Deborah L. | 1 |
| Bentler, Peter M. | 1 |
| Browne, M. W. | 1 |
| Chan, Wai | 1 |
| Cudeck, R. | 1 |
| Ferrer, Emilio | 1 |
| Manton, Kenneth G. | 1 |
| Medoff, Deborah R. | 1 |
| O'Grady, Kevin E. | 1 |
| Steele, Joel S. | 1 |
| Woodbury, Max A. | 1 |
| More ▼ | |
Publication Type
| Journal Articles | 7 |
| Reports - Evaluative | 5 |
| Opinion Papers | 1 |
| Reports - Research | 1 |
Education Level
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Steele, Joel S.; Ferrer, Emilio – Multivariate Behavioral Research, 2011
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
Descriptors: Calculus, Responses, Simulation, Models
Zhong, Xiaoling; Yuan, Ke-Hai – Multivariate Behavioral Research, 2011
In the structural equation modeling literature, the normal-distribution-based maximum likelihood (ML) method is most widely used, partly because the resulting estimator is claimed to be asymptotically unbiased and most efficient. However, this may not hold when data deviate from normal distribution. Outlying cases or nonnormally distributed data,…
Descriptors: Structural Equation Models, Simulation, Racial Identification, Computation
Peer reviewedWoodbury, Max A.; Manton, Kenneth G. – Multivariate Behavioral Research, 1991
An empirical Bayes-maximum likelihood estimation procedure is presented for the application of fuzzy partition models in describing high dimensional discrete response data. The model describes individuals in terms of partial membership in multiple latent categories that represent bounded discrete spaces. (SLD)
Descriptors: Bayesian Statistics, Equations (Mathematics), Estimation (Mathematics), Mathematical Models
Peer reviewedChan, Wai; Bentler, Peter M. – Multivariate Behavioral Research, 1996
A method is proposed for partially analyzing additive ipsative data (PAID). Transforming the PAID according to a developed equation preserves the density of the transformed data, and maximum likelihood estimation can be carried out as usual. Simulation results show that the original structural parameters can be accurately estimated from PAID. (SLD)
Descriptors: Equations (Mathematics), Estimation (Mathematics), Goodness of Fit, Matrices
Peer reviewedBrowne, M. W.; Cudeck, R. – Multivariate Behavioral Research, 1989
Single sample approximations are considered for the cross-validation coefficient in the analysis of covariance structures. Results of a random sampling experiment--using data from ability tests administered to high school students (sample sizes 100, 400, and 800)--illustrate the coefficient and adjustment for predictive validity. (SLD)
Descriptors: Ability Identification, Equations (Mathematics), Estimation (Mathematics), High School Students
Peer reviewedO'Grady, Kevin E.; Medoff, Deborah R. – Multivariate Behavioral Research, 1991
A procedure for evaluating a variety of rater reliability models is presented. A multivariate linear model is used to describe and assess a set of ratings. Parameters are represented in terms of a factor analytic model, and maximum likelihood methods test the model parameters. Illustrative examples are presented. (SLD)
Descriptors: Comparative Analysis, Correlation, Equations (Mathematics), Estimation (Mathematics)
Peer reviewedBandalos, Deborah L. – Multivariate Behavioral Research, 1993
A Monte Carlo study investigated the use of four cross-validation indices with confirmatory factor analysis models. Influences of sample size, loading size, and degree of model misspecification were studied. Larger sample sizes and better specified models result in better cross-validation results. (SLD)
Descriptors: Equations (Mathematics), Estimation (Mathematics), Influences, Mathematical Models

Direct link
