NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Teachers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing 1 to 15 of 39 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Riccardi, P.; Prete, G.; Chiappetta, F.; Meringolo, C. – Physics Education, 2023
This work discusses a didactic path aimed at revisiting the first experiments on the transmission and detection of electromagnetic waves, performed by Guglielmo Marconi at the end of the 19th century. With very simple materials it is possible to set-up apparatus that allow to illustrate practically the simple physical picture of wireless…
Descriptors: Telecommunications, Energy, Magnets, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Karadag, Mustafa; Yavas, Pervin Ünlü – Physics Education, 2021
In this work, we made a simple electronic tool called a 'magnetic polarity detector' which can determine the magnetic poles of permanent magnets or electromagnets. We used it in some student experiments in the physics laboratory. For example, determining the magnetic poles of permanent magnets and a current-carrying coils or electromagnets.…
Descriptors: Physics, Science Instruction, Magnets, Energy
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Andrio, Andreu; del Castillo, Luis Felipe; Compañ, Vicente – European Journal of Physics Education, 2020
In this paper, we show a laboratory experience describing the possibility to build a sensor using a coil to measure small thicknesses of materials with the possibility of measuring temperature simultaneously, with the same built sensor. Its operation is based on the following facts: An electric current (a.c), flows through a coil and a magnetic…
Descriptors: Science Instruction, Science Laboratories, Measurement Equipment, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Ishafit, I.; Indratno, T. K.; Prabowo, Y. D. – Physics Education, 2020
The topic of electric and magnetic fields is fundamental to the physics curriculum in both high school and college. The applied aspect of this topic has triggered the rapid development of modern technology in this era. This paper reported a remote data acquisition system developed for experiments with magnetic fields by coils to support…
Descriptors: Science Instruction, Magnets, Scientific Concepts, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Natoli, Sean N.; McMillin, David R. – Journal of Chemical Education, 2018
Students collect magnetic susceptibility data to verify that Hund's rule correctly predicts electronic configurations. Systems examined include three commercially available lanthanide(III)-containing complexes of the form M(acac)[subscript 3](H[subscript 2]O)[subscript 2] (where M = La(III), Nd(III), and Gd(III), and acac denotes the [CH[subscript…
Descriptors: Science Instruction, Magnets, College Science, Undergraduate Study
Peer reviewed Peer reviewed
Direct linkDirect link
Anjos, R. M.; Amaral, S. S. G.; Muniz, M. C.; Cardoso, R. P.; Bernardo, T. A. S.; Guerrieri, A.; Lage, L. L. – Physics Education, 2020
Harmful plastic debris found on beaches and in the oceans are not limited to drinking straws or bags. There are several synthetic organic polymers that can be used to make different kinds of plastic materials and have resulted in billions of tons of waste that can reach the aquatic biome and are harmful to freshwater and marine communities as well…
Descriptors: Spectroscopy, Teaching Methods, Science Instruction, Plastics
Peer reviewed Peer reviewed
Direct linkDirect link
Phillips, Jeffrey A.; Sanny, Jeff; Berube, David; Hoemke, Anatol – Physics Teacher, 2017
A laboratory experiment often performed in an introductory electricity and magnetism course involves the mapping of equipotential lines on a conductive sheet between two objects at different potentials. In this article, we describe how we have expanded this experiment so that it can be used to illustrate the electrostatic properties of conductors.…
Descriptors: Science Experiments, Laboratory Experiments, Science Laboratories, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Mayer, V. V.; Varaksina, E. I. – Physics Education, 2017
The paper presents a series of experiments that demonstrate the phenomenon of electromagnetic induction. These make it possible to determine the direction of the induced current and so confirm Lenz's Law. The simple experiments can be reproduced in a school laboratory and can be recommended for students' project activity.
Descriptors: Science Instruction, Science Experiments, Science Laboratories, Laboratory Experiments
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gülçiçek, Çaglar; Kanli, Uygar – Universal Journal of Educational Research, 2018
Although lab activities play an important role in physics teaching, many of these activities do not attain the expected objectives. Many reasons can be advanced for this, such as a lack of apparatus/equipment in schools, limits to the lab time allocated, teachers' lack of knowledge and skills about lab-oriented teaching methods or the teachers'…
Descriptors: Preservice Teachers, Physics, Science Teachers, Science Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Cooper, Tyler; Trafford, Russell; Attaluri, Anilchandra; Vernengo, Andrea Jennifer – Chemical Engineering Education, 2018
This paper describes an undergraduate laboratory experiment where students study the heating behavior of magnetic nanoparticles in the presence of alternating magnetic fields. Average score on the post-test was 45±12% for students who completed the lab online, versus 43±11% for those doing the activity hands-on. Post-test scores were significantly…
Descriptors: Science Laboratories, Undergraduate Students, Heat, Magnets
Peer reviewed Peer reviewed
Direct linkDirect link
Alvarez, Gustavo; Schulte, Jurgen; Stockton, Geoffrey; Wheeler, David – Physics Education, 2018
The real power of calculus is revealed when it is applied to actual physical problems. In this paper, we present a calculus inspired physics experiment suitable for high school and undergraduate programs. A model for the theory of the terminal velocity of a falling body subject to a resistive force is developed and its validity tested in an…
Descriptors: Secondary School Science, Science Instruction, High Schools, Science Laboratories
Peer reviewed Peer reviewed
Direct linkDirect link
Mayer , V. V.; Varaksina, E. I. – Physics Education, 2017
This paper presents a simple electromagnetic generator meant for use in students' experiments. This apparatus provides realization of a series of experiments demonstrating the principles of electricity generation and the conversion of electricity to other forms of energy with practical application. The experiments can be reproduced in a school…
Descriptors: Energy, Magnets, Science Experiments, Scientific Concepts
Peer reviewed Peer reviewed
Direct linkDirect link
Bates, Alan – Physics Teacher, 2015
Instruments or digital meters with data values visible on a seven-segment display can easily be found in the physics lab. Examples include multimeters, sound level meters, Geiger-Müller counters and electromagnetic field meters, where the display is used to show numerical data. Such instruments, without the ability to connect to computers or data…
Descriptors: Science Instruction, Science Laboratories, Physics, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Nunn, John – Physics Education, 2013
The principles behind two different designs of inductive power meter are presented. They both make use of the microphone input of a computer which, together with a custom-written program, can record the instantaneous power of a domestic electrical appliance. The device can be built quickly and can be calibrated with reference to a known power…
Descriptors: Science Instruction, Science Laboratories, Computer Uses in Education, Energy
Peer reviewed Peer reviewed
Direct linkDirect link
Doran, Patrick; Hawk, William; Siegel, P. B. – Physics Teacher, 2014
Maxwell's discovery of the relation between electricity, magnetism, and light was one of the most important ones in physics. With his added displacement current term, Maxwell showed that the equations of electricity and magnetism produced a radiation solution, electromagnetic (EM) radiation, that traveled with a speed of c=1/v(e0µ0). The…
Descriptors: Science Instruction, Physics, Energy, Magnets
Previous Page | Next Page »
Pages: 1  |  2  |  3