NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Sunyoung; Natasha Beretvas, S. – Journal of Experimental Education, 2021
When selecting a multilevel model to fit to a dataset, it is important to choose both a model that best matches characteristics of the data's structure, but also to include the appropriate fixed and random effects parameters. For example, when researchers analyze clustered data (e.g., students nested within schools), the multilevel model can be…
Descriptors: Hierarchical Linear Modeling, Statistical Significance, Multivariate Analysis, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Schweig, Jonathan David; Pane, John F. – International Journal of Research & Method in Education, 2016
Demands for scientific knowledge of what works in educational policy and practice has driven interest in quantitative investigations of educational outcomes, and randomized controlled trials (RCTs) have proliferated under these conditions. In educational settings, even when individuals are randomized, both experimental and control students are…
Descriptors: Randomized Controlled Trials, Educational Research, Multivariate Analysis, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Hawley, Leslie R.; Bovaird, James A.; Wu, ChaoRong – Applied Measurement in Education, 2017
Value-added assessment methods have been criticized by researchers and policy makers for a number of reasons. One issue includes the sensitivity of model results across different outcome measures. This study examined the utility of incorporating multivariate latent variable approaches within a traditional value-added framework. We evaluated the…
Descriptors: Value Added Models, Reliability, Multivariate Analysis, Scaling
Peer reviewed Peer reviewed
Direct linkDirect link
Choi, Youn-Jeng; Alexeev, Natalia; Cohen, Allan S. – International Journal of Testing, 2015
The purpose of this study was to explore what may be contributing to differences in performance in mathematics on the Trends in International Mathematics and Science Study 2007. This was done by using a mixture item response theory modeling approach to first detect latent classes in the data and then to examine differences in performance on items…
Descriptors: Test Bias, Mathematics Achievement, Mathematics Tests, Item Response Theory