NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Journal of Educational and Behavioral Statistics, 2025
Analyzing heterogeneous treatment effects (HTEs) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and preintervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Joshua B. Gilbert; Luke W. Miratrix; Mridul Joshi; Benjamin W. Domingue – Annenberg Institute for School Reform at Brown University, 2024
Analyzing heterogeneous treatment effects (HTE) plays a crucial role in understanding the impacts of educational interventions. A standard practice for HTE analysis is to examine interactions between treatment status and pre-intervention participant characteristics, such as pretest scores, to identify how different groups respond to treatment.…
Descriptors: Causal Models, Item Response Theory, Statistical Inference, Psychometrics
Peer reviewed Peer reviewed
Direct linkDirect link
VanHoudnos, Nathan M.; Greenhouse, Joel B. – Journal of Educational and Behavioral Statistics, 2016
When cluster randomized experiments are analyzed as if units were independent, test statistics for treatment effects can be anticonservative. Hedges proposed a correction for such tests by scaling them to control their Type I error rate. This article generalizes the Hedges correction from a posttest-only experimental design to more common designs…
Descriptors: Statistical Analysis, Randomized Controlled Trials, Error of Measurement, Scaling
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias