Publication Date
| In 2026 | 0 |
| Since 2025 | 18 |
| Since 2022 (last 5 years) | 53 |
| Since 2017 (last 10 years) | 68 |
| Since 2007 (last 20 years) | 94 |
Descriptor
| Educational Technology | 107 |
| Models | 107 |
| Artificial Intelligence | 102 |
| Technology Uses in Education | 41 |
| Foreign Countries | 23 |
| Computer Software | 21 |
| Electronic Learning | 21 |
| Intelligent Tutoring Systems | 21 |
| Prediction | 20 |
| Teaching Methods | 19 |
| Computer Simulation | 17 |
| More ▼ | |
Source
Author
| Barnes, Tiffany, Ed. | 2 |
| Feng, Mingyu, Ed. | 2 |
| Gal, Kobi | 2 |
| Richard Lee Davis | 2 |
| Segal, Avi | 2 |
| Seyed Parsa Neshaei | 2 |
| Shen, Jun | 2 |
| Tanja Käser | 2 |
| Yang Shi | 2 |
| Adish Singla | 1 |
| Ahmet Tayfur Akcan | 1 |
| More ▼ | |
Publication Type
Education Level
Audience
| Practitioners | 3 |
| Researchers | 2 |
| Students | 2 |
| Teachers | 2 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Philip I. Pavlik Jr.; Luke G. Eglington – International Educational Data Mining Society, 2025
In educational systems, predictive models face significant challenges during initial deployment and when new students begin to use them or when new exercises are added to the system due to a lack of data for making initial inferences, often called the cold start problem. This paper tests logitdec and logitdecevol, "evolutionary" features…
Descriptors: Artificial Intelligence, Models, Prediction, Accuracy
Javad Keyhan – International Journal of Technology in Education and Science, 2025
In recent years, remarkable advancements in artificial intelligence technology have created new opportunities for transforming educational systems and enhancing student learning. This study focuses on designing a model for an AI-based intelligent assistant to provide a personalized learning experience in higher education. A qualitative approach…
Descriptors: Individualized Instruction, Artificial Intelligence, Models, Higher Education
Caleb Or – International Journal of Technology in Education and Science, 2025
The Unified Theory of Acceptance and Use of Technology (UTAUT) and its successor, UTAUT2, were widely recognised frameworks for understanding technology adoption in organisational and consumer contexts. UTAUT2 extended the original framework by introducing constructs such as hedonic motivation, price value, and habit, broadening its applicability…
Descriptors: Artificial Intelligence, Educational Technology, Adoption (Ideas), Models
Nabila Khodeir; Fatma Elghannam – Education and Information Technologies, 2025
MOOC platforms provide a means of communication through forums, allowing learners to express their difficulties and challenges while studying various courses. Within these forums, some posts require urgent attention from instructors. Failing to respond promptly to these posts can contribute to higher dropout rates and lower course completion…
Descriptors: MOOCs, Computer Mediated Communication, Conferences (Gatherings), Models
Bogdan Yamkovenko; Charlie A. R. Hogg; Maya Miller-Vedam; Phillip Grimaldi; Walt Wells – International Educational Data Mining Society, 2025
Knowledge tracing (KT) models predict how students will perform on future interactions, given a sequence of prior responses. Modern approaches to KT leverage "deep learning" techniques to produce more accurate predictions, potentially making personalized learning paths more efficacious for learners. Many papers on the topic of KT focus…
Descriptors: Algorithms, Artificial Intelligence, Models, Prediction
Rungfa Pasmala; Pinanta Chatwattana – Higher Education Studies, 2025
This research aims to develop an adaptive digital project-based learning model enhanced with artificial intelligence technology to facilitate the creation of digital content. A systematic approach was employed, divided into three phases: 1) study and synthesis of conceptual frameworks to understand the elements and relationships of related…
Descriptors: Educational Technology, Active Learning, Student Projects, Artificial Intelligence
Yang Shi; Tiffany Barnes; Min Chi; Thomas Price – International Educational Data Mining Society, 2024
Knowledge tracing (KT) models have been a commonly used tool for tracking students' knowledge status. Recent advances in deep knowledge tracing (DKT) have demonstrated increased performance for knowledge tracing tasks in many datasets. However, interpreting students' states on single knowledge components (KCs) from DKT models could be challenging…
Descriptors: Algorithms, Artificial Intelligence, Models, Programming
Seyed Parsa Neshaei; Richard Lee Davis; Paola Mejia-Domenzain; Tanya Nazaretsky; Tanja Käser – International Educational Data Mining Society, 2025
Deep learning models for text classification have been increasingly used in intelligent tutoring systems and educational writing assistants. However, the scarcity of data in many educational settings, as well as certain imbalances in counts among the annotated labels of educational datasets, limits the generalizability and expressiveness of…
Descriptors: Artificial Intelligence, Classification, Natural Language Processing, Technology Uses in Education
Tanja Käser; Giora Alexandron – International Journal of Artificial Intelligence in Education, 2024
Simulation is a powerful approach that plays a significant role in science and technology. Computational models that simulate learner interactions and data hold great promise for educational technology as well. Amongst others, simulated learners can be used for teacher training, for generating and evaluating hypotheses on human learning, for…
Descriptors: Computer Simulation, Educational Technology, Artificial Intelligence, Algorithms
Michel C. Desmarais; Arman Bakhtiari; Ovide Bertrand Kuichua Kandem; Samira Chiny Folefack Temfack; Chahé Nerguizian – International Educational Data Mining Society, 2025
We propose a novel method for automated short answer grading (ASAG) designed for practical use in real-world settings. The method combines LLM embedding similarity with a nonlinear regression function, enabling accurate prediction from a small number of expert-graded responses. In this use case, a grader manually assesses a few responses, while…
Descriptors: Grading, Automation, Artificial Intelligence, Natural Language Processing
Maciej Pankiewicz; Yang Shi; Ryan S. Baker – International Educational Data Mining Society, 2025
Knowledge Tracing (KT) models predicting student performance in intelligent tutoring systems have been successfully deployed in several educational domains. However, their usage in open-ended programming problems poses multiple challenges due to the complexity of the programming code and a complex interplay between syntax and logic requirements…
Descriptors: Algorithms, Artificial Intelligence, Models, Intelligent Tutoring Systems
Tsubasa Minematsu; Atsushi Shimada – International Association for Development of the Information Society, 2024
In using large language models (LLMs) for education, such as distractors in multiple-choice questions and learning by teaching, error-containing content is used. Prompt tuning and retraining LLMs are possible ways of having LLMs generate error-containing sentences in the learning content. However, there needs to be more discussion on how to tune…
Descriptors: Educational Technology, Technology Uses in Education, Error Patterns, Sentences
Manh Hung Nguyen; Sebastian Tschiatschek; Adish Singla – International Educational Data Mining Society, 2024
Student modeling is central to many educational technologies as it enables predicting future learning outcomes and designing targeted instructional strategies. However, open-ended learning domains pose challenges for accurately modeling students due to the diverse behaviors and a large space of possible misconceptions. To approach these…
Descriptors: Artificial Intelligence, Natural Language Processing, Synthesis, Student Behavior
Behzad Mirzababaei; Viktoria Pammer-Schindler – IEEE Transactions on Learning Technologies, 2024
In this article, we investigate a systematic workflow that supports the learning engineering process of formulating the starting question for a conversational module based on existing learning materials, specifying the input that transformer-based language models need to function as classifiers, and specifying the adaptive dialogue structure,…
Descriptors: Learning Processes, Electronic Learning, Artificial Intelligence, Natural Language Processing
Bekir Yildirim; Ahmet Tayfur Akcan – Journal of Education in Science, Environment and Health, 2024
This study aimed to propose a Professional Development Model (PDM) for chemistry teachers to enhance their professional development in Artificial Intelligence (AI). The research group consisted of 17 chemistry teachers. The study was designed using a particular case study suitable for qualitative research methods. Document review, teacher…
Descriptors: Artificial Intelligence, Faculty Development, Science Teachers, Chemistry

Peer reviewed
Direct link
