Publication Date
In 2025 | 0 |
Since 2024 | 3 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 11 |
Since 2006 (last 20 years) | 11 |
Descriptor
Educational Research | 11 |
Randomized Controlled Trials | 11 |
Statistical Inference | 11 |
Causal Models | 5 |
Data Analysis | 4 |
Hierarchical Linear Modeling | 3 |
Regression (Statistics) | 3 |
Sample Size | 3 |
Sampling | 3 |
Statistical Bias | 3 |
Accuracy | 2 |
More ▼ |
Source
Author
Adam Sales | 2 |
Anthony F. Botelho | 2 |
Avery H. Closser | 2 |
Botelho, A. F. | 1 |
Deke, John | 1 |
Erickson, J. A. | 1 |
Gagnon-Bartsch, J. A. | 1 |
Hansen, Ben B. | 1 |
Heffernan, N. T. | 1 |
Heiser, Sarah | 1 |
Herodotou, Christothea | 1 |
More ▼ |
Publication Type
Reports - Research | 8 |
Journal Articles | 6 |
Reports - Descriptive | 2 |
Collected Works - General | 1 |
Numerical/Quantitative Data | 1 |
Education Level
Early Childhood Education | 1 |
Elementary Education | 1 |
Grade 3 | 1 |
Higher Education | 1 |
Postsecondary Education | 1 |
Primary Education | 1 |
Audience
Location
Canada | 1 |
Puerto Rico | 1 |
United Kingdom | 1 |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Wendy Castillo; Lindsay Dusard – Society for Research on Educational Effectiveness, 2024
Background: The emergence of causal research in education was almost strictly quantitative twenty years ago, however, that landscape has changed considerably. The number of intervention studies fielded and completed annually has increased substantially, and the quality of the evaluations is much more robust, including paying much greater attention…
Descriptors: Randomized Controlled Trials, Educational Research, Equal Education, Educational Policy
Avery H. Closser; Adam Sales; Anthony F. Botelho – Grantee Submission, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data on study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Avery H. Closser; Adam Sales; Anthony F. Botelho – Educational Technology Research and Development, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data to study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Sales, Adam C.; Hansen, Ben B. – Journal of Educational and Behavioral Statistics, 2020
Conventionally, regression discontinuity analysis contrasts a univariate regression's limits as its independent variable, "R," approaches a cut point, "c," from either side. Alternative methods target the average treatment effect in a small region around "c," at the cost of an assumption that treatment assignment,…
Descriptors: Regression (Statistics), Computation, Statistical Inference, Robustness (Statistics)
Gagnon-Bartsch, J. A.; Sales, A. C.; Wu, E.; Botelho, A. F.; Erickson, J. A.; Miratrix, L. W.; Heffernan, N. T. – Grantee Submission, 2019
Randomized controlled trials (RCTs) admit unconfounded design-based inference--randomization largely justifies the assumptions underlying statistical effect estimates--but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT non-participants. For example, data from A/B…
Descriptors: Randomized Controlled Trials, Educational Research, Prediction, Algorithms
Hitchcock, John H.; Johnson, R. Burke; Schoonenboom, Judith – Research in the Schools, 2018
The central purpose of this article is to provide an overview of the many ways in which special educators can generate and think about causal inference to inform policy and practice. Consideration of causality across different lenses can be carried out by engaging in multiple method and mixed methods ways of thinking about inference. This article…
Descriptors: Causal Models, Statistical Inference, Special Education, Educational Research
Society for Research on Educational Effectiveness, 2017
Bayesian statistical methods have become more feasible to implement with advances in computing but are not commonly used in educational research. In contrast to frequentist approaches that take hypotheses (and the associated parameters) as fixed, Bayesian methods take data as fixed and hypotheses as random. This difference means that Bayesian…
Descriptors: Bayesian Statistics, Educational Research, Statistical Analysis, Decision Making
Schweig, Jonathan David; Pane, John F. – International Journal of Research & Method in Education, 2016
Demands for scientific knowledge of what works in educational policy and practice has driven interest in quantitative investigations of educational outcomes, and randomized controlled trials (RCTs) have proliferated under these conditions. In educational settings, even when individuals are randomized, both experimental and control students are…
Descriptors: Randomized Controlled Trials, Educational Research, Multivariate Analysis, Models
Herodotou, Christothea; Heiser, Sarah; Rienties, Bart – Open Learning, 2017
Randomised control trials (RCTs) are an evidence-based research approach which has not yet been adopted and widely used in open and distance education to inform educational policy and practice. Despite the challenges entailed in their application, RCTs hold the power to robustly evaluate the effects of educational interventions in distance…
Descriptors: Randomized Controlled Trials, Open Education, Distance Education, Feasibility Studies
Deke, John; Wei, Thomas; Kautz, Tim – National Center for Education Evaluation and Regional Assistance, 2017
Evaluators of education interventions are increasingly designing studies to detect impacts much smaller than the 0.20 standard deviations that Cohen (1988) characterized as "small." While the need to detect smaller impacts is based on compelling arguments that such impacts are substantively meaningful, the drive to detect smaller impacts…
Descriptors: Intervention, Educational Research, Research Problems, Statistical Bias
Stapleton, Laura M.; McNeish, Daniel M.; Yang, Ji Seung – Educational Psychologist, 2016
Multilevel models are often used to evaluate hypotheses about relations among constructs when data are nested within clusters (Raudenbush & Bryk, 2002), although alternative approaches are available when analyzing nested data (Binder & Roberts, 2003; Sterba, 2009). The overarching goal of this article is to suggest when it is appropriate…
Descriptors: Hierarchical Linear Modeling, Data Analysis, Statistical Data, Multivariate Analysis