Publication Date
In 2025 | 1 |
Since 2024 | 1 |
Since 2021 (last 5 years) | 3 |
Since 2016 (last 10 years) | 16 |
Since 2006 (last 20 years) | 25 |
Descriptor
Data Collection | 25 |
Educational Research | 25 |
Prediction | 25 |
Data Analysis | 18 |
Models | 14 |
Foreign Countries | 12 |
Online Courses | 10 |
Student Behavior | 9 |
Academic Achievement | 8 |
Artificial Intelligence | 7 |
Integrated Learning Systems | 7 |
More ▼ |
Source
Author
Publication Type
Journal Articles | 15 |
Reports - Research | 13 |
Collected Works - Proceedings | 6 |
Information Analyses | 4 |
Reports - Descriptive | 3 |
Speeches/Meeting Papers | 3 |
Numerical/Quantitative Data | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Australia | 3 |
Netherlands | 3 |
Brazil | 2 |
Florida | 2 |
Germany | 2 |
Israel | 2 |
Massachusetts | 2 |
Pennsylvania | 2 |
Spain | 2 |
United States | 2 |
Asia | 1 |
More ▼ |
Laws, Policies, & Programs
Assessments and Surveys
Massachusetts Comprehensive… | 1 |
Program for International… | 1 |
What Works Clearinghouse Rating
Yaosheng Lou; Kimberly F. Colvin – Discover Education, 2025
Predicting student performance has been a critical focus of educational research. With an effective predictive model, schools can identify potentially at-risk students and implement timely interventions to support student success. Recent developments in educational data mining (EDM) have introduced several machine learning techniques that can…
Descriptors: Educational Research, Data Collection, Performance, Prediction
Umer, Rahila; Susnjak, Teo; Mathrani, Anuradha; Suriadi, Lim – Interactive Learning Environments, 2023
Predictive models on students' academic performance can be built by using historical data for modelling students' learning behaviour. Such models can be employed in educational settings to determine how new students will perform and in predicting whether these students should be classed as at-risk of failing a course. Stakeholders can use…
Descriptors: Prediction, Student Behavior, Models, Academic Achievement
McFarland, Daniel A.; Khanna, Saurabh; Domingue, Benjamin W.; Pardos, Zachary A. – AERA Open, 2021
This AERA Open special topic concerns the large emerging research area of education data science (EDS). In a narrow sense, EDS applies statistics and computational techniques to educational phenomena and questions. In a broader sense, it is an umbrella for a fleet of new computational techniques being used to identify new forms of data, measures,…
Descriptors: Learning Analytics, Statistics, Computation, Measurement
Colver, Mitchell – New Directions for Institutional Research, 2019
As we become increasingly acquainted with the rich opportunities that analytics systems can provide, there is a commensurate need to consider the extent to which analytics tools are effectively integrated, with proper training, into the day-to-day functioning of higher education professionals. This chapter explores the extent to which predictive…
Descriptors: Data Collection, Data Analysis, Educational Research, Higher Education
Adekitan, Aderibigbe Israel; Noma-Osaghae, Etinosa – Education and Information Technologies, 2019
The academic performance of a student in a university is determined by a number of factors, both academic and non-academic. Student that previously excelled at the secondary school level may lose focus due to peer pressure and social lifestyle while those who previously struggled due to family distractions may be able to focus away from home, and…
Descriptors: Foreign Countries, Data Collection, Educational Research, Prediction
Mimis, Mohamed; El Hajji, Mohamed; Es-saady, Youssef; Oueld Guejdi, Abdellah; Douzi, Hassan; Mammass, Driss – Education and Information Technologies, 2019
The educational recommendation system to provide support for academic guidance and adaptive learning has always been an important issue of research for smart education. A bad guidance can give rise to difficulties in further studies and can be extended to school dropout. This paper explores the potential of Educational Data Mining for academic…
Descriptors: Educational Counseling, Guidance, Educational Research, Data Collection
Drachsler, H.; Kalz, M. – Journal of Computer Assisted Learning, 2016
The article deals with the interplay between learning analytics and massive open online courses (MOOCs) and provides a conceptual framework to situate ongoing research in the MOOC and learning analytics innovation cycle (MOLAC framework). The MOLAC framework is organized on three levels: On the micro-level, the data collection and analytics…
Descriptors: Online Courses, Data Collection, Data Analysis, Reflection
Choi, Samuel P. M.; Lam, S. S.; Li, Kam Cheong; Wong, Billy T. M. – Educational Technology & Society, 2018
While learning analytics (LA) practices have been shown to be practical and effective, most of them require a huge amount of data and effort. This paper reports a case study which demonstrates the feasibility of practising LA at a low cost for instructors to identify at-risk students in an undergraduate business quantitative methods course.…
Descriptors: Data Collection, Data Analysis, Educational Research, Audience Response Systems
MacLellan, Christopher J.; Harpstead, Erik; Patel, Rony; Koedinger, Kenneth R. – International Educational Data Mining Society, 2016
While Educational Data Mining research has traditionally emphasized the practical aspects of learner modeling, such as predictive modeling, estimating students knowledge, and informing adaptive instruction, in the current study, we argue that Educational Data Mining can also be used to test and improve our fundamental theories of human learning.…
Descriptors: Educational Research, Data Collection, Learning Theories, Recall (Psychology)
Hutner, Todd L.; Markman, Arthur B. – Science Education, 2016
Research on science teacher cognition is important as findings from this research can be used to improve teacher training, leading to improved classroom practice. Previous research has often relied on two underlying assumptions: Cognition is an individual process, and these processes are detailed and introspective. In this paper, we put forth a…
Descriptors: Science Teachers, Science Instruction, Schemata (Cognition), Models
Casey, Kevin – Journal of Learning Analytics, 2017
Learning analytics offers insights into student behaviour and the potential to detect poor performers before they fail exams. If the activity is primarily online (for example computer programming), a wealth of low-level data can be made available that allows unprecedented accuracy in predicting which students will pass or fail. In this paper, we…
Descriptors: Keyboarding (Data Entry), Educational Research, Data Collection, Data Analysis
San Pedro, Maria Ofelia Z.; Baker, Ryan S.; Heffernan, Neil T. – Technology, Knowledge and Learning, 2017
Middle school is an important phase in the academic trajectory, which plays a major role in the path to successful post-secondary outcomes such as going to college. Despite this, research on factors leading to college-going choices do not yet utilize the extensive fine-grained data now becoming available on middle school learning and engagement.…
Descriptors: Educational Technology, Technology Uses in Education, Middle Schools, Postsecondary Education
Tempelaar, Dirk T.; Rienties, Bart; Nguyen, Quan – IEEE Transactions on Learning Technologies, 2017
Studies in the field of learning analytics (LA) have shown students' demographics and learning management system (LMS) data to be effective identifiers of "at risk" performance. However, insights generated by these predictive models may not be suitable for pedagogically informed interventions due to the inability to explain why students…
Descriptors: Student Behavior, Integrated Learning Systems, Personality, Educational Research
Moissa, Barbara; Gasparini, Isabela; Kemczinski, Avanilde – International Journal of Distance Education Technologies, 2015
Learning Analytics (LA) is a field that aims to optimize learning through the study of dynamical processes occurring in the students' context. It covers the measurement, collection, analysis and reporting of data about students and their contexts. This study aims at surveying existing research on LA to identify approaches, topics, and needs for…
Descriptors: Large Group Instruction, Educational Technology, Online Courses, Educational Research
Sao Pedro, Michael A.; Baker, Ryan S. J. d.; Gobert, Janice D. – Grantee Submission, 2013
When validating assessment models built with data mining, generalization is typically tested at the student-level, where models are tested on new students. This approach, though, may fail to find cases where model performance suffers if other aspects of those cases relevant to prediction are not well represented. We explore this here by testing if…
Descriptors: Educational Research, Data Collection, Data Analysis, Generalizability Theory
Previous Page | Next Page ยป
Pages: 1 | 2