NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 54 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Guiyun Feng; Honghui Chen – Education and Information Technologies, 2025
Data mining has been successfully and widely utilized in educational information systems, and an important research field has been formed, which is educational data mining. Process mining inherits the characteristics of data mining which can not only use historical data in the system to analyze learning behavior and predict academic performance,…
Descriptors: Educational Research, Artificial Intelligence, Data Use, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Umer, Rahila; Susnjak, Teo; Mathrani, Anuradha; Suriadi, Lim – Interactive Learning Environments, 2023
Predictive models on students' academic performance can be built by using historical data for modelling students' learning behaviour. Such models can be employed in educational settings to determine how new students will perform and in predicting whether these students should be classed as at-risk of failing a course. Stakeholders can use…
Descriptors: Prediction, Student Behavior, Models, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Zara Ersozlu; Sona Taheri; Inge Koch – Education and Information Technologies, 2024
Integrating machine learning (ML) methods in educational research has the potential to greatly impact upon research, teaching, learning and assessment by enabling personalised learning, adaptive assessment and providing insights into student performance, progress and learning patterns. To reveal more about this notion, we investigated ML…
Descriptors: Artificial Intelligence, Educational Research, Data Analysis, Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hwang, Gwo-Jen; Tu, Yun-Fang; Tang, Kai-Yu – International Review of Research in Open and Distributed Learning, 2022
This study reviews the journal publications of artificial intelligence-supported online learning (AIoL) in the Web of Science (WOS) database from 1997 to 2019 taking into account the contributing countries/areas, leading journals, highly cited papers, authors, research areas, research topics, roles of AIoL, and adopted artificial intelligence (AI)…
Descriptors: Artificial Intelligence, Electronic Learning, Educational Research, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Bin Tan; Hao-Yue Jin; Maria Cutumisu – Computer Science Education, 2024
Background and Context: Computational thinking (CT) has been increasingly added to K-12 curricula, prompting teachers to grade more and more CT artifacts. This has led to a rise in automated CT assessment tools. Objective: This study examines the scope and characteristics of publications that use machine learning (ML) approaches to assess…
Descriptors: Computation, Thinking Skills, Artificial Intelligence, Student Evaluation
Peer reviewed Peer reviewed
Direct linkDirect link
M. Nazir; A. Noraziah; M. Rahmah – International Journal of Virtual and Personal Learning Environments, 2023
An effective educational program warrants the inclusion of an innovative construction that enhances the higher education efficacy in such a way that accelerates the achievement of desired results and reduces the risk of failures. Educational decision support system has currently been a hot topic in educational systems, facilitating the pupil…
Descriptors: Data Analysis, Academic Achievement, Artificial Intelligence, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Pillutla, Venkata Sai; Tawfik, Andrew A.; Giabbanelli, Philippe J. – Technology, Knowledge and Learning, 2020
In massive open online courses (MOOCs), learners can interact with each other using discussion boards. Automatically inferring the states or needs of learners from their posts is of interest to instructors, who are faced with a high attrition in MOOCs. Machine learning has previously been successfully used to identify states such as confusion or…
Descriptors: Learning Processes, Online Courses, Data Collection, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Hilbert, Sven; Coors, Stefan; Kraus, Elisabeth; Bischl, Bernd; Lindl, Alfred; Frei, Mario; Wild, Johannes; Krauss, Stefan; Goretzko, David; Stachl, Clemens – Review of Education, 2021
Machine learning (ML) provides a powerful framework for the analysis of high-dimensional datasets by modelling complex relationships, often encountered in modern data with many variables, cases and potentially non-linear effects. The impact of ML methods on research and practical applications in the educational sciences is still limited, but…
Descriptors: Artificial Intelligence, Online Courses, Educational Research, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lin Lin; Danhua Zhou; Jingying Wang; Yu Wang – SAGE Open, 2024
The rapid development of artificial intelligence has driven the transformation of educational evaluation into big data-driven. This study used a systematic literature review method to analyzed 44 empirical research articles on the evaluation of big data education. Firstly, it has shown an increasing trend year by year, and is mainly published in…
Descriptors: Data Analysis, Educational Research, Geographic Regions, Periodicals
Peer reviewed Peer reviewed
Direct linkDirect link
Renz, André; Hilbig, Romy – International Journal of Educational Technology in Higher Education, 2020
The ongoing datafication of our social reality has resulted in the emergence of new data-based business models. This development is also reflected in the education market. An increasing number of educational technology (EdTech) companies are entering the traditional education market with data-based teaching and learning solutions, and they are…
Descriptors: Artificial Intelligence, Educational Technology, Technology Uses in Education, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Shimmei, Machi; Matsuda, Noboru – International Educational Data Mining Society, 2023
We propose an innovative, effective, and data-agnostic method to train a deep-neural network model with an extremely small training dataset, called VELR (Voting-based Ensemble Learning with Rejection). In educational research and practice, providing valid labels for a sufficient amount of data to be used for supervised learning can be very costly…
Descriptors: Artificial Intelligence, Training, Natural Language Processing, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
Knox, Jeremy; Williamson, Ben; Bayne, Sian – Learning, Media and Technology, 2020
This paper examines visions of 'learning' across humans and machines in a near-future of intensive data analytics. Building upon the concept of 'learnification', practices of 'learning' in emerging big data-driven environments are discussed in two significant ways: the "training" of machines, and the "nudging" of human…
Descriptors: Data Collection, Data Analysis, Artificial Intelligence, Man Machine Systems
Peer reviewed Peer reviewed
Direct linkDirect link
Jennifer Campbell; Katie Ansell; Tim Stelzer – Physical Review Physics Education Research, 2024
Recent advances in publicly available natural language processors (NLP) may enhance the efficiency of analyzing student short-answer responses in physics education research (PER). We train a state-of-the-art NLP, IBM's Watson, and test its agreement with human coders using two different studies that gathered text responses in which students…
Descriptors: Artificial Intelligence, Physics, Natural Language Processing, Computer Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Xue Wang; Gaoxiang Luo – Society for Research on Educational Effectiveness, 2024
Background: Despite the usefulness of systematic reviews and meta-analyses, they are time-consuming and labor-intensive (Michelson & Reuter, 2019). The technological advancements in recent years have led to the development of tools aimed at streamlining the processes of systematic reviews and meta-analyses. Innovations such as Paperfetcher…
Descriptors: Meta Analysis, Artificial Intelligence, Computational Linguistics, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Cho, Eunsoon; Cho, Young Hoan; Grant, Michael M.; Song, Donggil; Huh, Yeol – TechTrends: Linking Research and Practice to Improve Learning, 2020
The Korean Society for Educational Technology (KSET) hosted its second panel discussion partnering with the Association for Educational Communications and Technology (AECT) at the 2019 AECT Convention in Las Vegas, Nevada. A total of four panelists, two from Korea and two from the U.S., participated in the discussion on the trends of educational…
Descriptors: Foreign Countries, Educational Technology, Technology Uses in Education, Telecommunications
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4