Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 38 |
| Since 2017 (last 10 years) | 63 |
| Since 2007 (last 20 years) | 98 |
Descriptor
| Bayesian Statistics | 157 |
| Decision Making | 157 |
| Models | 50 |
| Probability | 39 |
| Comparative Analysis | 24 |
| Classification | 23 |
| Prediction | 23 |
| Foreign Countries | 22 |
| Accuracy | 19 |
| Statistical Analysis | 19 |
| Mathematical Models | 18 |
| More ▼ | |
Source
Author
Publication Type
Education Level
| Higher Education | 25 |
| Postsecondary Education | 17 |
| Adult Education | 2 |
| Elementary Education | 2 |
| Early Childhood Education | 1 |
| Elementary Secondary Education | 1 |
| Grade 2 | 1 |
| Grade 4 | 1 |
| Intermediate Grades | 1 |
| Primary Education | 1 |
Audience
| Researchers | 4 |
| Practitioners | 1 |
Location
| Netherlands | 3 |
| Australia | 2 |
| Spain | 2 |
| United Kingdom (England) | 2 |
| California | 1 |
| Czech Republic | 1 |
| Europe | 1 |
| Germany | 1 |
| India | 1 |
| Missouri | 1 |
| Morocco | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| National Assessment of… | 2 |
| COMPASS (Computer Assisted… | 1 |
| Defining Issues Test | 1 |
| Dynamic Indicators of Basic… | 1 |
| Peabody Picture Vocabulary… | 1 |
What Works Clearinghouse Rating
Abdelhafez, Hoda Ahmed; Elmannai, Hela – International Journal of Information and Communication Technology Education, 2022
Learning data analytics improves the learning field in higher education using educational data for extracting useful patterns and making better decisions. Identifying potential at-risk students may help instructors and academic guidance to improve the students' performance and the achievement of learning outcomes. The aim of this research study is…
Descriptors: Learning Analytics, Mathematics, Prediction, Academic Achievement
Han, Hyemin; Dawson, Kelsie J. – Journal of Moral Education, 2022
Although some previous studies have investigated the relationship between moral foundations and moral judgment development, the methods used have not been able to fully explore the relationship. In the present study, we used Bayesian Model Averaging (BMA) in order to address the limitations in traditional regression methods that have been used…
Descriptors: Moral Values, Moral Development, Decision Making, Correlation
Wagner, Richard K.; Moxley, Jerad; Schatschneider, Chris; Zirps, Fotena A. – Scientific Studies of Reading, 2023
Purpose: Bayesian-based models for diagnosis are common in medicine but have not been incorporated into identification models for dyslexia. The purpose of the present study was to evaluate Bayesian identification models that included a broader set of predictors and that capitalized on recent developments in modeling the prevalence of dyslexia.…
Descriptors: Bayesian Statistics, Identification, Dyslexia, Models
Vannaprathip, Narumol; Haddawy, Peter; Schultheis, Holger; Suebnukarn, Siriwan – International Journal of Artificial Intelligence in Education, 2022
Virtual reality simulation has had a significant impact on training of psychomotor surgical skills, yet there is still a lack of work on its use to teach surgical decision making. This is particularly noteworthy given the recognized importance of decision making in achieving positive surgical outcomes. With the objective of filling this gap, we…
Descriptors: Intelligent Tutoring Systems, Decision Making, Surgery, Teaching Methods
Ebert, Philip A. – Journal of Adventure Education and Outdoor Learning, 2019
In this article, I explore a Bayesian approach to avalanche decision-making. I motivate this perspective by highlighting a version of the base-rate fallacy and show that a similar pattern applies to decision-making in avalanche-terrain. I then draw out three theoretical lessons from adopting a Bayesian approach and discuss these lessons…
Descriptors: Bayesian Statistics, Decision Making, Outdoor Education, Natural Disasters
Jin, Kuan-Yu; Wu, Yi-Jhen; Chen, Hui-Fang – Journal of Educational and Behavioral Statistics, 2022
For surveys of complex issues that entail multiple steps, multiple reference points, and nongradient attributes (e.g., social inequality), this study proposes a new multiprocess model that integrates ideal-point and dominance approaches into a treelike structure (IDtree). In the IDtree, an ideal-point approach describes an individual's attitude…
Descriptors: Likert Scales, Item Response Theory, Surveys, Responses
Stone, Daniel F. – Journal of Economic Education, 2022
The author of this article describes a game-theory-based economics class on how people should, and do, form beliefs, communicate, and make decisions under uncertainty. Topics include Bayesian and non-Bayesian belief updating, the value of information, communication games, advertising, political media, and social learning. The only prerequisite is…
Descriptors: Undergraduate Students, Economics Education, Concept Formation, Beliefs
Pedder, Hugo; Dias, Sofia; Bennetts, Margherita; Boucher, Martin; Welton, Nicky J. – Research Synthesis Methods, 2019
Background: Model-based meta-analysis (MBMA) is increasingly used to inform drug-development decisions by synthesising results from multiple studies to estimate treatment, dose-response, and time-course characteristics. Network meta-analysis (NMA) is used in Health Technology Appraisals for simultaneously comparing effects of multiple treatments,…
Descriptors: Meta Analysis, Guidelines, Drug Therapy, Decision Making
Hsu, Anne S.; Horng, Andy; Griffiths, Thomas L.; Chater, Nick – Cognitive Science, 2017
Identifying patterns in the world requires noticing not only unusual occurrences, but also unusual absences. We examined how people learn from absences, manipulating the extent to which an absence is expected. People can make two types of inferences from the absence of an event: either the event is possible but has not yet occurred, or the event…
Descriptors: Statistical Inference, Bayesian Statistics, Evidence, Prediction
Lu, Yonggang; Zheng, Qiujie; Quinn, Daniel – Journal of Statistics and Data Science Education, 2023
We present an instructional approach to teaching causal inference using Bayesian networks and "do"-Calculus, which requires less prerequisite knowledge of statistics than existing approaches and can be consistently implemented in beginner to advanced levels courses. Moreover, this approach aims to address the central question in causal…
Descriptors: Bayesian Statistics, Learning Motivation, Calculus, Advanced Courses
Evans, Nathan J.; Hawkins, Guy E.; Brown, Scott D. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2020
Theories of perceptual decision making have been dominated by the idea that evidence accumulates in favor of different alternatives until some fixed threshold amount is reached, which triggers a decision. Recent theories have suggested that these thresholds may not be fixed during each decision but change as time passes. These collapsing…
Descriptors: Decision Making, Reaction Time, Task Analysis, Perception
Pek, Jolynn; Van Zandt, Trisha – Psychology Learning and Teaching, 2020
Statistical thinking is essential to understanding the nature of scientific results as a consumer. Statistical thinking also facilitates thinking like a scientist. Instead of emphasizing a "correct" procedure for data analysis and its outcome, statistical thinking focuses on the process of data analysis. This article reviews frequentist…
Descriptors: Bayesian Statistics, Thinking Skills, Data Analysis, Evaluation Methods
Nahar, Khaledun; Shova, Boishakhe Islam; Ria, Tahmina; Rashid, Humayara Binte; Islam, A. H. M. Saiful – Education and Information Technologies, 2021
Information is everywhere in a hidden and scattered way. It becomes useful when we apply Data mining to extracts the hidden, meaningful, and potentially useful patterns from these vast data resources. Educational data mining ensures a quality education by analyzing educational data based on various aspects. In this paper, we have analyzed the…
Descriptors: Learning Analytics, College Students, Engineering Education, Data Collection
The AI Teacher Test: Measuring the Pedagogical Ability of Blender and GPT-3 in Educational Dialogues
Tack, Anaïs; Piech, Chris – International Educational Data Mining Society, 2022
How can we test whether state-of-the-art generative models, such as Blender and GPT-3, are good AI teachers, capable of replying to a student in an educational dialogue? Designing an AI teacher test is challenging: although evaluation methods are much-needed, there is no off-the-shelf solution to measuring pedagogical ability. This paper reports…
Descriptors: Artificial Intelligence, Dialogs (Language), Bayesian Statistics, Decision Making
Hanauer, Matthew; Yel, Nedim – Research in the Schools, 2018
Bayesian analysts use informed priors to improve analytic precision and prediction; however, rarely have they applied a mixed methods approach that uses qualitative data to develop these priors. Yet, using qualitatively informed priors can be useful when making predictions in the context of small sample sizes, which is common in school-based…
Descriptors: Decision Making, Response to Intervention, Mixed Methods Research, Bayesian Statistics

Peer reviewed
Direct link
