NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 15 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Marchant, Nicolás; Quillien, Tadeg; Chaigneau, Sergio E. – Cognitive Science, 2023
The causal view of categories assumes that categories are represented by features and their causal relations. To study the effect of causal knowledge on categorization, researchers have used Bayesian causal models. Within that framework, categorization may be viewed as dependent on a likelihood computation (i.e., the likelihood of an exemplar with…
Descriptors: Classification, Bayesian Statistics, Causal Models, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Xie, Belinda; Hayes, Brett – Cognitive Science, 2022
According to Bayesian models of judgment, testimony from independent informants has more evidential value than dependent testimony. Three experiments investigated learners' sensitivity to this distinction. Each experiment used a social version of the balls-and-urns task, in which participants judged which of two urns was the most likely source of…
Descriptors: Evidence, Decision Making, Task Analysis, Beliefs
Peer reviewed Peer reviewed
Direct linkDirect link
Zheng, Rong; Busemeyer, Jerome R.; Nosofsky, Robert M. – Cognitive Science, 2023
Though individual categorization or decision processes have been studied separately in many previous investigations, few studies have investigated how they interact by using a two-stage task of first categorizing and then deciding. To address this issue, we investigated a categorization-decision task in two experiments. In both, participants were…
Descriptors: Classification, Decision Making, Task Analysis, Feedback (Response)
Peer reviewed Peer reviewed
Direct linkDirect link
Rehrig, Gwendolyn L.; Cheng, Michelle; McMahan, Brian C.; Shome, Rahul – Cognitive Research: Principles and Implications, 2021
A major problem in human cognition is to understand how newly acquired information and long-standing beliefs about the environment combine to make decisions and plan behaviors. Over-dependence on long-standing beliefs may be a significant source of suboptimal decision-making in unusual circumstances. While the contribution of long-standing beliefs…
Descriptors: Cognitive Processes, Decision Making, Semantics, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Rodríguez-Ferreiro, Javier; Vadillo, Miguel A.; Barberia, Itxaso – Teaching of Psychology, 2023
Background: We have previously presented two educational interventions aimed to diminish causal illusions and promote critical thinking. In both cases, these interventions reduced causal illusions developed in response to active contingency learning tasks, in which participants were able to decide whether to introduce the potential cause in each…
Descriptors: Sampling, Inferences, Psychology, Undergraduate Students
Peer reviewed Peer reviewed
Direct linkDirect link
Sandry, Joshua; Ricker, Timothy J. – Cognitive Research: Principles and Implications, 2022
The drift diffusion model (DDM) is a widely applied computational model of decision making that allows differentiation between latent cognitive and residual processes. One main assumption of the DDM that has undergone little empirical testing is the level of independence between cognitive and motor responses. If true, widespread incorporation of…
Descriptors: Decision Making, Motor Reactions, Cognitive Processes, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Evans, Nathan J.; Hawkins, Guy E.; Brown, Scott D. – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2020
Theories of perceptual decision making have been dominated by the idea that evidence accumulates in favor of different alternatives until some fixed threshold amount is reached, which triggers a decision. Recent theories have suggested that these thresholds may not be fixed during each decision but change as time passes. These collapsing…
Descriptors: Decision Making, Reaction Time, Task Analysis, Perception
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Tack, Anaïs; Piech, Chris – International Educational Data Mining Society, 2022
How can we test whether state-of-the-art generative models, such as Blender and GPT-3, are good AI teachers, capable of replying to a student in an educational dialogue? Designing an AI teacher test is challenging: although evaluation methods are much-needed, there is no off-the-shelf solution to measuring pedagogical ability. This paper reports…
Descriptors: Artificial Intelligence, Dialogs (Language), Bayesian Statistics, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Fernández-López, María; Marcet, Ana; Perea, Manuel – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2019
In past decades, researchers have conducted a myriad of masked priming lexical decision experiments aimed at unveiling the early processes underlying lexical access. A relatively overlooked question is whether a masked unrelated wordlike/unwordlike prime influences the processing of the target stimuli. If participants apply to the primes the same…
Descriptors: Priming, Decision Making, Language Processing, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Oh, Hanna; Beck, Jeffrey M.; Zhu, Pingping; Sommer, Marc A.; Ferrari, Silvia; Egner, Tobias – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2016
Much of our real-life decision making is bounded by uncertain information, limitations in cognitive resources, and a lack of time to allocate to the decision process. It is thought that humans overcome these limitations through "satisficing," fast but "good-enough" heuristic decision making that prioritizes some sources of…
Descriptors: Decision Making, Cues, Cognitive Processes, Time
Peer reviewed Peer reviewed
Direct linkDirect link
Pezzulo, Giovanni; Cartoni, Emilio; Rigoli, Francesco; io-Lopez, Léo; Friston, Karl – Learning & Memory, 2016
Balancing habitual and deliberate forms of choice entails a comparison of their respective merits--the former being faster but inflexible, and the latter slower but more versatile. Here, we show that arbitration between these two forms of control can be derived from first principles within an Active Inference scheme. We illustrate our arguments…
Descriptors: Interference (Learning), Epistemology, Physiology, Neurology
Peer reviewed Peer reviewed
Direct linkDirect link
Bramley, Neil R.; Lagnado, David A.; Speekenbrink, Maarten – Journal of Experimental Psychology: Learning, Memory, and Cognition, 2015
Interacting with a system is key to uncovering its causal structure. A computational framework for interventional causal learning has been developed over the last decade, but how real causal learners might achieve or approximate the computations entailed by this framework is still poorly understood. Here we describe an interactive computer task in…
Descriptors: Intervention, Memory, Cognitive Processes, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Sanborn, Adam N.; Mansinghka, Vikash K.; Griffiths, Thomas L. – Psychological Review, 2013
People have strong intuitions about the influence objects exert upon one another when they collide. Because people's judgments appear to deviate from Newtonian mechanics, psychologists have suggested that people depend on a variety of task-specific heuristics. This leaves open the question of how these heuristics could be chosen, and how to…
Descriptors: Heuristics, Statistical Inference, Mechanics (Physics), Intuition
Peer reviewed Peer reviewed
Direct linkDirect link
Hamlin, J. Kiley; Ullman, Tomer; Tenenbaum, Josh; Goodman, Noah; Baker, Chris – Developmental Science, 2013
Evaluating individuals based on their pro- and anti-social behaviors is fundamental to successful human interaction. Recent research suggests that even preverbal infants engage in social evaluation; however, it remains an open question whether infants' judgments are driven uniquely by an analysis of the mental states that motivate others' helpful…
Descriptors: Infants, Social Cognition, Bayesian Statistics, Infant Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Michael D. – Cognitive Science, 2006
We consider human performance on an optimal stopping problem where people are presented with a list of numbers independently chosen from a uniform distribution. People are told how many numbers are in the list, and how they were chosen. People are then shown the numbers one at a time, and are instructed to choose the maximum, subject to the…
Descriptors: Bayesian Statistics, Inferences, Numbers, Cognitive Processes