NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 54 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Krista Bixler; Marjorie Ceballos – Leadership and Policy in Schools, 2025
Instructional leadership is a complex dimension, which requires that principals possess expertise in goal setting, leading the instructional program, and creating the conditions for a successful school environment. Effective instructional leaders manage the instructional program by planning, coordinating, and evaluating the work of teachers and…
Descriptors: Principals, Instructional Leadership, Artificial Intelligence, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Knox, Jeremy – Learning, Media and Technology, 2023
This paper examines ways in which the ethics of data-driven technologies might be (re)politicised, particularly where educational institutions are involved. The recent proliferation of principles, guidelines, and frameworks for ethical 'AI' (artificial intelligence) have emerged from a plethora of organisations in recent years, and seem poised to…
Descriptors: Ethics, Artificial Intelligence, Social Justice, Governance
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matthew T. Marino; Eleazar Vasquez III – Journal of Special Education Leadership, 2024
This manuscript presents an exploratory mixed-methods case study examining the impact of artificial intelligence (AI) in the form of generative pretrained transformers (GPTs) and large language models on special education administrative practices in one school district in the Northeast United States. AI holds tremendous potential to positively…
Descriptors: Special Education, Administrators, Artificial Intelligence, Data Use
Peer reviewed Peer reviewed
Direct linkDirect link
Mason, Claire M.; Chen, Haohui; Evans, David; Walker, Gavin – International Journal of Information and Learning Technology, 2023
Purpose: This paper aims to demonstrate how skills taxonomies can be used in combination with machine learning to integrate diverse online datasets and reveal skills gaps. The purpose of this study is then to show how the skills gaps revealed by the integrated datasets can be used to achieve better labour market alignment, keep educational…
Descriptors: Taxonomy, Artificial Intelligence, Data Collection, Data Analysis
Nasheen Nur – ProQuest LLC, 2021
The main goal of learning analytics and early detection systems is to extract knowledge from student data to understand students' trends of activities towards success and risk and design intervention methods to improve learning performance and experience. However, many factors contribute to the challenge of designing and building effective…
Descriptors: Artificial Intelligence, Undergraduate Students, Learning Analytics, Time Factors (Learning)
Emily J. Barnes – ProQuest LLC, 2024
This quantitative study investigates the predictive power of machine learning (ML) models on degree completion among adult learners in higher education, emphasizing the enhancement of data-driven decision-making (DDDM). By analyzing three ML models - Random Forest, Gradient-Boosting machine (GBM), and CART Decision Tree - within a not-for-profit,…
Descriptors: Artificial Intelligence, Higher Education, Models, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Yannik Fleischer; Susanne Podworny; Rolf Biehler – Statistics Education Research Journal, 2024
This study investigates how 11- to 12-year-old students construct data-based decision trees using data cards for classification purposes. We examine the students' heuristics and reasoning during this process. The research is based on an eight-week teaching unit during which students labeled data, built decision trees, and assessed them using test…
Descriptors: Decision Making, Data Use, Cognitive Processes, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Jing Chen; Bei Fang; Hao Zhang; Xia Xue – Interactive Learning Environments, 2024
High dropout rate exists universally in massive open online courses (MOOCs) due to the separation of teachers and learners in space and time. Dropout prediction using the machine learning method is an extremely important prerequisite to identify potential at-risk learners to improve learning. It has attracted much attention and there have emerged…
Descriptors: MOOCs, Potential Dropouts, Prediction, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Woolverton, Genevieve Alice; Pollastri, Alisha R. – Educational Measurement: Issues and Practice, 2021
Within classrooms, psychologists and teachers use direct behavior observation methods, systematic behavior observations (SBOs) and direct behavior ratings (DBRs), to gather information about students' behaviors for the purposes of making decisions related to diagnosis and classroom management or behavioral feedback respectively. Observers use SBOs…
Descriptors: Student Behavior, Classroom Observation Techniques, Behavior Rating Scales, Behavior Patterns
Peer reviewed Peer reviewed
Direct linkDirect link
Brandon Sepulvado; Jennifer Hamilton – Society for Research on Educational Effectiveness, 2021
Background: Traditional survey efforts to gather outcome data at scale have significant limitations, including cost, time, and respondent burden. This pilot study explored new and innovative large-scale methods of collecting and validating data from publicly available sources. Taking advantage of emerging data science techniques, we leverage…
Descriptors: Automation, Data Collection, Data Analysis, Validity
Peer reviewed Peer reviewed
Direct linkDirect link
Jiang, Shiyan; Tang, Hengtao; Tatar, Cansu; Rosé, Carolyn P.; Chao, Jie – Learning, Media and Technology, 2023
It's critical to foster artificial intelligence (AI) literacy for high school students, the first generation to grow up surrounded by AI, to understand working mechanism of data-driven AI technologies and critically evaluate automated decisions from predictive models. While efforts have been made to engage youth in understanding AI through…
Descriptors: Artificial Intelligence, High School Students, Models, Classification
Peer reviewed Peer reviewed
Direct linkDirect link
McKenzie, Marcia; Gulson, Kalervo N. – Research in Education, 2023
This paper introduces the concept of infrastructure into discussions on climate change and education. We focus on the links between the increased use of digital data and the central role of data infrastructures in education, and the energy infrastructure needed to support their growing use in schools and school systems. We elaborate a need for a…
Descriptors: Data Use, Climate, Educational Administration, Governance
Peer reviewed Peer reviewed
PDF on ERIC Download full text
He, Lingjun; Levine, Richard A.; Fan, Juanjuan; Beemer, Joshua; Stronach, Jeanne – Practical Assessment, Research & Evaluation, 2018
In institutional research, modern data mining approaches are seldom considered to address predictive analytics problems. The goal of this paper is to highlight the advantages of tree-based machine learning algorithms over classic (logistic) regression methods for data-informed decision making in higher education problems, and stress the success of…
Descriptors: Institutional Research, Regression (Statistics), Statistical Analysis, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Nesrine Mansouri; Mourad Abed; Makram Soui – Education and Information Technologies, 2024
Selecting undergraduate majors or specializations is a crucial decision for students since it considerably impacts their educational and career paths. Moreover, their decisions should match their academic background, interests, and goals to pursue their passions and discover various career paths with motivation. However, such a decision remains…
Descriptors: Undergraduate Students, Decision Making, Majors (Students), Specialization
Peer reviewed Peer reviewed
Direct linkDirect link
Holly Golecki; Joe Bradley – Biomedical Engineering Education, 2024
Biomedical engineering capstone design courses provide a salient opportunity to discuss ethical considerations in engineering. As technology and society develop and change, new challenges constantly arise related to how society and technology inform each other. In this space, ethical training for engineering students is critically important for…
Descriptors: Experiential Learning, Decision Making, Ethics, Capstone Experiences
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4