NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 13 results Save | Export
Joseph Santalucia – ProQuest LLC, 2022
The research is a descriptive correlational study that investigates new methods for the creation of innovation for institutions. The research addresses the need for organizations to generate a novel form of innovation for their competitiveness and survival. These novel methods in the generation of innovation include using an organization's big…
Descriptors: Data Science, Innovation, Data, Decision Making
Peer reviewed Peer reviewed
Direct linkDirect link
Hairui Yu; Suzanne E. Perumean-Chaney; Kathryn A. Kaiser – Journal of Statistics and Data Science Education, 2024
Missing data can significantly influence results of epidemiological studies. The National Health and Nutrition Examination Survey (NHANES) is a popular epidemiological dataset. We examined recent practices related to the prevalence and the reporting of the amount of missing data, the underlying mechanisms, and the methods used for handling missing…
Descriptors: Statistics Education, Data Science, Data Use, Research Problems
Peer reviewed Peer reviewed
Direct linkDirect link
Pieterman-Bos, Annelies; van Mil, Marc H. W. – Science & Education, 2023
Biomedical data science education faces the challenge of preparing students for conducting rigorous research with increasingly complex and large datasets. At the same time, philosophers of science face the challenge of making their expertise accessible for scientists in such a way that it can improve everyday research practice. Here, we…
Descriptors: Philosophy, Science Education, Scientific Principles, Data Science
Peer reviewed Peer reviewed
Direct linkDirect link
Victoria Delaney; Victor R. Lee – Information and Learning Sciences, 2024
With increased focus on data literacy and data science education in K-12, little is known about what makes a data set preferable for use by classroom teachers. Given that educational designers often privilege authenticity, the purpose of this study is to examine how teachers use features of data sets to determine their suitability for authentic…
Descriptors: High School Teachers, Data Use, Information Literacy, Aesthetics
Peer reviewed Peer reviewed
Direct linkDirect link
Christopher J. Casement; Laura A. McSweeney – Journal of Statistics and Data Science Education, 2024
As the use of data in courses that incorporate statistical methods has become more prevalent, so has the need for tools for working with such data, including those for data creation and adjustment. While numerous tools exist that support faculty who teach statistical methods, many are focused on data analysis or theoretical concepts, and there…
Descriptors: Statistics Education, Data Science, Educational Technology, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bende, Imre – Acta Didactica Napocensia, 2022
Understanding data structures is fundamental for mastering algorithms. In order to solve problems and tasks, students must be able to choose the most appropriate data structure in which the data is stored and that helps in the process of the solution. Of course, there is no single correct solution, but in many cases, it is an important step to…
Descriptors: Programming, Computer Science Education, Data, Visual Aids
Peer reviewed Peer reviewed
Direct linkDirect link
Wilkerson, Michelle Hoda; Lanouette, Kathryn; Shareff, Rebecca L. – Mathematical Thinking and Learning: An International Journal, 2022
Data preparation (also called "wrangling" or "cleaning") -- the evaluation and manipulation of data prior to formal analysis -- is often dismissed as a precursor to meaningful engagement with a dataset. Here, we re-envision data preparation in light of calls to prepare students for a data-rich world. Traditionally, curricular…
Descriptors: Data Science, Information Literacy, Data Analysis, Secondary School Students
Pelaez, Kevin – ProQuest LLC, 2022
The emerging field of data science has brought attention to how we teach statistics and data science (Bargagliotti et al., 2020; Franklin et al., 2007) and prepare the next generation of statistics and data science teachers (Franklin et al., 2013). To realize the full potential of statistics and data science, researchers have also called for using…
Descriptors: Data Science, Statistics Education, Social Justice, Preservice Teachers
Nasheen Nur – ProQuest LLC, 2021
The main goal of learning analytics and early detection systems is to extract knowledge from student data to understand students' trends of activities towards success and risk and design intervention methods to improve learning performance and experience. However, many factors contribute to the challenge of designing and building effective…
Descriptors: Artificial Intelligence, Undergraduate Students, Learning Analytics, Time Factors (Learning)
Donna P. Jeffrey – ProQuest LLC, 2021
This action research study examined how faculty development workshops affected how testing grade level teachers disaggregate standardized data. It also examined how teachers used the information to improve communication and classroom instruction. The rationale for the study was that teachers were asked to be data driven, but were not taught how to…
Descriptors: Teacher Workshops, Faculty Development, Program Implementation, Data Use
James LaMar Bolden – ProQuest LLC, 2023
This study explored the core competencies, technological skills, functional proficiencies, and professional experiences of data scientists at higher education institutions. The specific population of interest was higher education administrators and staff professionals identified as data scientists. This study was informed by the following guiding…
Descriptors: Higher Education, Data Science, Administrators, Professional Personnel
Preel-Dumas, Camille; Hendra, Richard; Denison, Dakota – MDRC, 2023
This brief explores data science methods that workforce programs can use to predict participant success. With access to vast amounts of data on their programs, workforce training providers can leverage their management information systems (MIS) to understand and improve their programs' outcomes. By predicting which participants are at greater risk…
Descriptors: Labor Force Development, Programs, Prediction, Success
Peer reviewed Peer reviewed
Direct linkDirect link
Renu, N.; Sunil, K. – Higher Education for the Future, 2023
Integration of computational data science (CDS) into the university curriculum offers several advantages for students, faculty and the institution. This article discusses the benefits to students of introducing CDS into the university curriculum with a focus on developing skills in cheminformatics, data analysis, structure--activity relationships,…
Descriptors: Data Science, Higher Education, College Students, Skill Development