NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 91 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sghir, Nabila; Adadi, Amina; Lahmer, Mohammed – Education and Information Technologies, 2023
The last few years have witnessed an upsurge in the number of studies using Machine and Deep learning models to predict vital academic outcomes based on different kinds and sources of student-related data, with the goal of improving the learning process from all perspectives. This has led to the emergence of predictive modelling as a core practice…
Descriptors: Prediction, Learning Analytics, Artificial Intelligence, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Nesrine Mansouri; Mourad Abed; Makram Soui – Education and Information Technologies, 2024
Selecting undergraduate majors or specializations is a crucial decision for students since it considerably impacts their educational and career paths. Moreover, their decisions should match their academic background, interests, and goals to pursue their passions and discover various career paths with motivation. However, such a decision remains…
Descriptors: Undergraduate Students, Decision Making, Majors (Students), Specialization
Peer reviewed Peer reviewed
Direct linkDirect link
Korchi, Adil; Dardor, Mohamed; Mabrouk, El Houssine – Education and Information Technologies, 2020
Learning techniques have proven their capacity to treat large amount of data. Most statistical learning approaches use specific size learning sets and create static models. Withal, in certain some situations such as incremental or active learning the learning process can work with only a smal amount of data. In this case, the search for algorithms…
Descriptors: Learning Analytics, Data, Computation, Mathematics
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Klingler, Severin; Wampfler, Rafael; Käser, Tanja; Solenthaler, Barbara; Gross, Markus – International Educational Data Mining Society, 2017
Gathering labeled data in educational data mining (EDM) is a time and cost intensive task. However, the amount of available training data directly influences the quality of predictive models. Unlabeled data, on the other hand, is readily available in high volumes from intelligent tutoring systems and massive open online courses. In this paper, we…
Descriptors: Classification, Artificial Intelligence, Networks, Learning Disabilities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Villanueva Manjarres, Andrés; Moreno Sandoval, Luis Gabriel; Salinas Suárez, Martha Janneth – Digital Education Review, 2018
Educational Data Mining is an emerging discipline which seeks to develop methods to explore large amounts of data from educational settings, in order to understand students' behavior, interests and results in a better way. In recent years there have been various works related to this specialty and multiple data mining techniques derived from this…
Descriptors: Information Retrieval, Data Analysis, Educational Environment, Research Methodology
P. Janelle McFeetors – Sage Research Methods Cases, 2016
This case study describes an experience of using constructivist grounded theory to analyze data. The project investigated how high school students improved their approaches to learning mathematics. Over 4 months, students participated in processes which supported their learning while simultaneously generating data, including interactive writing,…
Descriptors: High School Students, Mathematics Education, Data Analysis, Data Interpretation
Peer reviewed Peer reviewed
Direct linkDirect link
Sabitha, A. Sai; Mehrotra, Deepti; Bansal, Abhay – Education and Information Technologies, 2017
Currently the challenges in e-Learning are converging the learning content from various sources and managing them within e-learning practices. Data mining learning algorithms can be used and the contents can be converged based on the Metadata of the objects. Ensemble methods use multiple learning algorithms and it can be used to converge the…
Descriptors: Electronic Learning, Metadata, Computer System Design, Design Preferences
Saini, Sheetal – ProQuest LLC, 2012
Rapid advances in data-rich domains of science, technology, and business has amplified the computational challenges of "Big Data" synthesis necessary to slow the widening gap between the rate at which the data is being collected and analyzed for knowledge. This has led to the renewed need for efficient and accurate algorithms, framework,…
Descriptors: Data Analysis, Data Processing, Classification, Mathematics
Anaya, Leticia H. – ProQuest LLC, 2011
In the Information Age, a proliferation of unstructured text electronic documents exists. Processing these documents by humans is a daunting task as humans have limited cognitive abilities for processing large volumes of documents that can often be extremely lengthy. To address this problem, text data computer algorithms are being developed.…
Descriptors: Classification, Data Processing, Mathematics, Accuracy
Peer reviewed Peer reviewed
Direct linkDirect link
Morsey, Mohamed; Lehmann, Jens; Auer, Soren; Stadler, Claus; Hellmann, Sebastian – Program: Electronic Library and Information Systems, 2012
Purpose: DBpedia extracts structured information from Wikipedia, interlinks it with other knowledge bases and freely publishes the results on the web using Linked Data and SPARQL. However, the DBpedia release process is heavyweight and releases are sometimes based on several months old data. DBpedia-Live solves this problem by providing a live…
Descriptors: Encyclopedias, Collaborative Writing, Electronic Publishing, Data
Peer reviewed Peer reviewed
Direct linkDirect link
Zhuang, Jie; Chen, Peijie; Wang, Chao; Huang, Liang; Zhu, Zheng; Zhang, Wenjie; Fan, Xiang – Research Quarterly for Exercise and Sport, 2013
Purpose: The purpose of this study was to investigate the characteristics of missing physical activity (PA) data of children and youth. Method: PA data from the Chinese City Children and Youth Physical Activity Study ("N" = 2,758; 1,438 boys and 1,320 girls; aged 9-17 years old) were used for the study. After the data were sorted by the…
Descriptors: Physical Activities, Error of Measurement, Statistical Data, Gender Differences
Wei, Weiqi – ProQuest LLC, 2012
Subject selection is essential and has become the rate-limiting step for harvesting knowledge to advance healthcare through clinical research. Present manual approaches inhibit researchers from conducting deep and broad studies and drawing confident conclusions. High-throughput clinical phenotyping (HTCP), a recently proposed approach, leverages…
Descriptors: Health Services, Records (Forms), Medical Evaluation, Electronic Publishing
Peer reviewed Peer reviewed
Direct linkDirect link
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rupp, Andre A.; Levy, Roy; Dicerbo, Kristen E.; Sweet, Shauna J.; Crawford, Aaron V.; Calico, Tiago; Benson, Martin; Fay, Derek; Kunze, Katie L.; Mislevy, Robert J.; Behrens, John T. – Journal of Educational Data Mining, 2012
In this paper we describe the development and refinement of "evidence rules" and "measurement models" within the "evidence model" of the "evidence-centered design" (ECD) framework in the context of the "Packet Tracer" digital learning environment of the "Cisco Networking Academy." Using…
Descriptors: Computer Networks, Evidence Based Practice, Design, Instructional Design
Michalski, Greg V. – Association for Institutional Research (NJ1), 2011
Excessive college course withdrawals are costly to the student and the institution in terms of time to degree completion, available classroom space, and other resources. Although generally well quantified, detailed analysis of the reasons given by students for course withdrawal is less common. To address this, a text mining analysis was performed…
Descriptors: College Instruction, Courses, Withdrawal (Education), College Students
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7