NotesFAQContact Us
Collection
Advanced
Search Tips
Publication Date
In 20260
Since 20257
Audience
Researchers1
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 7 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kamila Misiejuk; Sonsoles López-Pernas; Rogers Kaliisa; Mohammed Saqr – Journal of Learning Analytics, 2025
Generative artificial intelligence (GenAI) has opened new possibilities for designing learning analytics (LA) tools, gaining new insights about student learning processes and their environment, and supporting teachers in assessing and monitoring students. This systematic literature review maps the empirical research of 41 papers utilizing GenAI…
Descriptors: Literature Reviews, Artificial Intelligence, Learning Analytics, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Liyanachchi Mahesha Harshani De Silva; María Jesús Rodríguez-Triana; Irene-Angelica Chounta; Gerti Pishtari – Journal of Computing in Higher Education, 2025
With technological advances, institutional stakeholders are considering evidence-based developments such as Curriculum Analytics (CA) to reflect on curriculum and its impact on student learning, dropouts, program quality, and overall educational effectiveness. However, little is known about the CA state of the art in Higher Education Institutions…
Descriptors: Learning Analytics, Curriculum Evaluation, Higher Education, Stakeholders
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rosa R. Soto Ruidias; Bernardo Pereira Nunes; Ruben Manrique; Sean Siqueira – Journal of Learning Analytics, 2025
Despite the increasing availability of data used to inform educational policies and practices, concerns persist regarding its quality and accessibility. This study surveys quality education data from Brazil, Colombia, and Peru and evaluates their alignment with the FAIR principles and availability to support academic analytics (AA) and learning…
Descriptors: Foreign Countries, Educational Quality, Learning Analytics, Educational Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Eirini Kalaitzopoulou; Athanasios Christopoulos; Paul Matthews – Informatics in Education, 2025
While research on Learning Analytics (LA) is plentiful, it often prioritises perspectives on LA systems over the practical ways instructors use data to analyse and refine the learning process per se. The present study addresses this inadequacy by investigating how student data is employed by educators in UK Higher Education Institutions (HEIs) and…
Descriptors: Information Literacy, Learning Analytics, Data Use, College Faculty
Peer reviewed Peer reviewed
Direct linkDirect link
Lili Aunimo; Janne Kauttonen; Marko Vahtola; Salla Huttunen – Journal of Computing in Higher Education, 2025
Institutions of higher education possess large amounts of learning-related data in their student registers and learning management systems (LMS). This data can be mined to gain insights into study paths, study styles and possible bottlenecks on the study paths. In this study, we focused on creating a predictive model for study completion time…
Descriptors: Data Collection, Learning Management Systems, Study Habits, Time on Task
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Wenyi Lu; Joseph Griffin; Troy D. Sadler; James Laffey; Sean P. Goggins – Journal of Learning Analytics, 2025
Game-based learning (GBL) is increasingly recognized as an effective tool for teaching diverse skills, particularly in science education, due to its interactive, engaging, and motivational qualities, along with timely assessments and intelligent feedback. However, more empirical studies are needed to facilitate its wider application in school…
Descriptors: Game Based Learning, Predictor Variables, Evaluation Methods, Educational Games
Peer reviewed Peer reviewed
Direct linkDirect link
Kelli A. Bird; Benjamin L. Castleman; Yifeng Song – Journal of Policy Analysis and Management, 2025
Predictive analytics are increasingly pervasive in higher education. However, algorithmic bias has the potential to reinforce racial inequities in postsecondary success. We provide a comprehensive and translational investigation of algorithmic bias in two separate prediction models--one predicting course completion, the second predicting degree…
Descriptors: Algorithms, Technology Uses in Education, Bias, Racism