NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 121 to 135 of 159 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Sharma, Richa – International Journal on E-Learning, 2011
Building intelligent course designing systems adaptable to the learners' needs is one of the key goals of research in e-learning. This goal is all the more crucial as gaining knowledge in an e-learning environment depends solely on computer mediated interaction within the learner group and among the learners and instructors. The patterns generated…
Descriptors: Electronic Learning, Educational Environment, Instructional Design, Student Needs
Peer reviewed Peer reviewed
Direct linkDirect link
de la Torre, Jimmy; Song, Hao – Applied Psychological Measurement, 2009
Assessments consisting of different domains (e.g., content areas, objectives) are typically multidimensional in nature but are commonly assumed to be unidimensional for estimation purposes. The different domains of these assessments are further treated as multi-unidimensional tests for the purpose of obtaining diagnostic information. However, when…
Descriptors: Ability, Tests, Item Response Theory, Data Analysis
Rai, Dovan; Gong, Yue; Beck, Joseph E. – International Working Group on Educational Data Mining, 2009
Student modeling is a widely used approach to make inference about a student's attributes like knowledge, learning, etc. If we wish to use these models to analyze and better understand student learning there are two problems. First, a model's ability to predict student performance is at best weakly related to the accuracy of any one of its…
Descriptors: Data Analysis, Statistical Analysis, Probability, Models
Pardos, Zachary A.; Heffernan, Neil T. – International Working Group on Educational Data Mining, 2009
Researchers who make tutoring systems would like to know which sequences of educational content lead to the most effective learning by their students. The majority of data collected in many ITS systems consist of answers to a group of questions of a given skill often presented in a random sequence. Following work that identifies which items…
Descriptors: Data Analysis, Bayesian Statistics, Statistical Analysis, Problem Sets
Peer reviewed Peer reviewed
Direct linkDirect link
Xu, Yonghong Jade; Ishitani, Terry T. – New Directions for Institutional Research, 2008
In recent years, rapid advancement has taken place in computing technology that allows institutional researchers to efficiently and effectively address data of increasing volume and structural complexity (Luan, 2002). In this chapter, the authors propose a new data analytical technique, Bayesian belief networks (BBN), to add to the toolbox for…
Descriptors: Institutional Research, Classification, Researchers, College Faculty
Karmel, Tom; Mark, Kevin; Mlotkowski, Peter – National Centre for Vocational Education Research (NCVER), 2009
This technical paper examines some large and unusual movements for data in the 2007 VET (Vocational Education Training) Provider Collection by comparison with 2006. Changes in the patterns of courses undertaken explain most of the divergence between students, enrolments and hours. Appendices include: (1) Derivation of the decomposition; (2) Tables…
Descriptors: Vocational Education, Enrollment Rate, Enrollment Trends, Research Reports
Peer reviewed Peer reviewed
Direct linkDirect link
Hsieh, Chueh-An; Maier, Kimberly S. – International Journal of Research & Method in Education, 2009
The capacity of Bayesian methods in estimating complex statistical models is undeniable. Bayesian data analysis is seen as having a range of advantages, such as an intuitive probabilistic interpretation of the parameters of interest, the efficient incorporation of prior information to empirical data analysis, model averaging and model selection.…
Descriptors: Equal Education, Bayesian Statistics, Data Analysis, Comparative Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Zhang, Zhiyong; Hamagami, Fumiaki; Wang, Lijuan Lijuan; Nesselroade, John R.; Grimm, Kevin J. – International Journal of Behavioral Development, 2007
Bayesian methods for analyzing longitudinal data in social and behavioral research are recommended for their ability to incorporate prior information in estimating simple and complex models. We first summarize the basics of Bayesian methods before presenting an empirical example in which we fit a latent basis growth curve model to achievement data…
Descriptors: Computation, Bayesian Statistics, Statistical Analysis, Longitudinal Studies
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Schochet, Peter Z. – National Center for Education Evaluation and Regional Assistance, 2008
This report presents guidelines for addressing the multiple comparisons problem in impact evaluations in the education area. The problem occurs due to the large number of hypothesis tests that are typically conducted across outcomes and subgroups in these studies, which can lead to spurious statistically significant impact findings. The…
Descriptors: Guidelines, Testing, Hypothesis Testing, Statistical Significance
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Rafferty, Anna N., Ed.; Whitehill, Jacob, Ed.; Romero, Cristobal, Ed.; Cavalli-Sforza, Violetta, Ed. – International Educational Data Mining Society, 2020
The 13th iteration of the International Conference on Educational Data Mining (EDM 2020) was originally arranged to take place in Ifrane, Morocco. Due to the SARS-CoV-2 (coronavirus) epidemic, EDM 2020, as well as most other academic conferences in 2020, had to be changed to a purely online format. To facilitate efficient transmission of…
Descriptors: Educational Improvement, Teaching Methods, Information Retrieval, Data Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Rouder, Jeffrey N.; Lu, Jun; Sun, Dongchu; Speckman, Paul; Morey, Richard; Naveh-Benjamin, Moshe – Psychometrika, 2007
The theory of signal detection is convenient for measuring mnemonic ability in recognition memory paradigms. In these paradigms, randomly selected participants are asked to study randomly selected items. In practice, researchers aggregate data across items or participants or both. The signal detection model is nonlinear; consequently, analysis…
Descriptors: Simulation, Recognition (Psychology), Computation, Mnemonics
Seltzer, Michael; Choi, Kilchan; Thum, Yeow Meng – 2002
In intervention studies, it is important to assess whether one program might be more effective for individuals with extreme initial difficulties, while another might be more effective for individuals with less extreme initial difficulties. In setting in which time-series data are obtained for each person, this entails examining interactions…
Descriptors: Bayesian Statistics, Data Analysis, Estimation (Mathematics), Intervention
Peer reviewed Peer reviewed
Molenaar, Ivo W. – Psychometrika, 1998
Explores the robustness of conclusions from a statistical model against variations in model choice with an illustration from G. Box and G. Tiao (1973). Suggests that simultaneous consideration of a class of models for the same data is sometimes superior to analyzing the data under one model and demonstrates advantages to Adaptive Bayesian…
Descriptors: Bayesian Statistics, Data Analysis, Models, Robustness (Statistics)
Peer reviewed Peer reviewed
Direct linkDirect link
Hardin, J. Michael; Anderson, Billie S.; Woodby, Lesa L.; Crawford, Myra A.; Russell, Toya V. – Evaluation Review, 2008
This article explores the statistical methodologies used in demonstration and effectiveness studies when the treatments are applied across multiple settings. The importance of evaluating and how to evaluate these types of studies are discussed. As an alternative to standard methodology, the authors of this article offer an empirical binomial…
Descriptors: Bayesian Statistics, Alternative Assessment, Data Analysis, Statistical Studies
Peer reviewed Peer reviewed
Direct linkDirect link
Gupta, Jayanti; Damien, Paul – Psychometrika, 2005
Fully and partially ranked data arise in a variety of contexts. From a Bayesian perspective, attention has focused on distance-based models; in particular, the Mallows model and extensions thereof. In this paper, a class of prior distributions, the "Binary Tree," is developed on the symmetric group. The attractive features of the class are: it…
Descriptors: Bayesian Statistics, Models, Comparative Analysis, Statistical Data
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11