NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 46 to 60 of 159 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
König, Christoph; van de Schoot, Rens – Educational Review, 2018
The ability of a scientific discipline to build cumulative knowledge depends on its predominant method of data analysis. A steady accumulation of knowledge requires approaches which allow researchers to consider results from comparable prior research. Bayesian statistics is especially relevant for establishing a cumulative scientific discipline,…
Descriptors: Bayesian Statistics, Educational Research, Educational Practices, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Gardner, Josh; Brooks, Christopher – Journal of Learning Analytics, 2018
Model evaluation -- the process of making inferences about the performance of predictive models -- is a critical component of predictive modelling research in learning analytics. We survey the state of the practice with respect to model evaluation in learning analytics, which overwhelmingly uses only naïve methods for model evaluation or…
Descriptors: Prediction, Models, Evaluation, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kim, Seohyun; Lu, Zhenqiu; Cohen, Allan S. – Measurement: Interdisciplinary Research and Perspectives, 2018
Bayesian algorithms have been used successfully in the social and behavioral sciences to analyze dichotomous data particularly with complex structural equation models. In this study, we investigate the use of the Polya-Gamma data augmentation method with Gibbs sampling to improve estimation of structural equation models with dichotomous variables.…
Descriptors: Bayesian Statistics, Structural Equation Models, Computation, Social Science Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Eagle, Michael; Corbett, Albert; Stamper, John; Mclaren, Bruce – International Educational Data Mining Society, 2018
In this work we use prior to tutor-session data to generate an individualized student knowledge model. Intelligent learning environments use student models to individualize curriculum sequencing and help messages. Researchers decompose the learning tasks into sets of Knowledge Components (KCs) that represent individual units of knowledge; the…
Descriptors: Individualized Instruction, Models, Data Analysis, Knowledge Level
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cui, Yang; Chu, Man-Wai; Chen, Fu – Journal of Educational Data Mining, 2019
Digital game-based assessments generate student process data that is much more difficult to analyze than traditional assessments. The formative nature of game-based assessments permits students, through applying and practicing the targeted knowledge and skills during gameplay, to gain experiences, receive immediate feedback, and as a result,…
Descriptors: Educational Games, Student Evaluation, Data Analysis, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Pan, Tianshu; Yin, Yue – Applied Measurement in Education, 2017
In this article, we propose using the Bayes factors (BF) to evaluate person fit in item response theory models under the framework of Bayesian evaluation of an informative diagnostic hypothesis. We first discuss the theoretical foundation for this application and how to analyze person fit using BF. To demonstrate the feasibility of this approach,…
Descriptors: Bayesian Statistics, Goodness of Fit, Item Response Theory, Monte Carlo Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Kaplan, David; Su, Dan – Journal of Educational and Behavioral Statistics, 2016
This article presents findings on the consequences of matrix sampling of context questionnaires for the generation of plausible values in large-scale assessments. Three studies are conducted. Study 1 uses data from PISA 2012 to examine several different forms of missing data imputation within the chained equations framework: predictive mean…
Descriptors: Sampling, Questionnaires, Measurement, International Assessment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Villanueva Manjarres, Andrés; Moreno Sandoval, Luis Gabriel; Salinas Suárez, Martha Janneth – Digital Education Review, 2018
Educational Data Mining is an emerging discipline which seeks to develop methods to explore large amounts of data from educational settings, in order to understand students' behavior, interests and results in a better way. In recent years there have been various works related to this specialty and multiple data mining techniques derived from this…
Descriptors: Information Retrieval, Data Analysis, Educational Environment, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Wang, Shiyu; Yang, Yan; Culpepper, Steven Andrew; Douglas, Jeffrey A. – Journal of Educational and Behavioral Statistics, 2018
A family of learning models that integrates a cognitive diagnostic model and a higher-order, hidden Markov model in one framework is proposed. This new framework includes covariates to model skill transition in the learning environment. A Bayesian formulation is adopted to estimate parameters from a learning model. The developed methods are…
Descriptors: Skill Development, Cognitive Measurement, Cognitive Processes, Markov Processes
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Sahebi, Shaghayegh; Lin, Yu-Ru; Brusilovsky, Peter – International Educational Data Mining Society, 2016
We propose a novel tensor factorization approach, Feedback-Driven Tensor Factorization (FDTF), for modeling student learning process and predicting student performance. This approach decomposes a tensor that is built upon students' attempt sequence, while considering the quizzes students select to work with as its feedback. FDTF does not require…
Descriptors: Data Analysis, Prediction, Models, Learning
Peer reviewed Peer reviewed
Direct linkDirect link
Liu, Qingtang; Zhang, Si; Wang, Qiyun; Chen, Wenli – IEEE Transactions on Learning Technologies, 2018
Teachers' online discussion text data shed light on their reflective thinking. With the growing scale of text data, the traditional way of manual coding, however, has been challenged. In order to process the large-scale unstructured text data, it is necessary to integrate the inductive content analysis method and educational data mining…
Descriptors: Information Retrieval, Data Collection, Data Analysis, Discourse Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Lee, Soo; Suh, Youngsuk – Journal of Educational Measurement, 2018
Lord's Wald test for differential item functioning (DIF) has not been studied extensively in the context of the multidimensional item response theory (MIRT) framework. In this article, Lord's Wald test was implemented using two estimation approaches, marginal maximum likelihood estimation and Bayesian Markov chain Monte Carlo estimation, to detect…
Descriptors: Item Response Theory, Sample Size, Models, Error of Measurement
Peer reviewed Peer reviewed
Direct linkDirect link
Slater, Stefan; Joksimovic, Srecko; Kovanovic, Vitomir; Baker, Ryan S.; Gasevic, Dragan – Journal of Educational and Behavioral Statistics, 2017
In recent years, a wide array of tools have emerged for the purposes of conducting educational data mining (EDM) and/or learning analytics (LA) research. In this article, we hope to highlight some of the most widely used, most accessible, and most powerful tools available for the researcher interested in conducting EDM/LA research. We will…
Descriptors: Data Analysis, Data Processing, Computer Uses in Education, Educational Research
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mao, Ye; Zhi, Rui; Khoshnevisan, Farzaneh; Price, Thomas W.; Barnes, Tiffany; Chi, Min – International Educational Data Mining Society, 2019
Early prediction of student difficulty during long-duration learning activities allows a tutoring system to intervene by providing needed support, such as a hint, or by alerting an instructor. To be effective, these predictions must come early and be highly accurate, but such predictions are difficult for open-ended programming problems. In this…
Descriptors: Difficulty Level, Learning Activities, Prediction, Programming
Peer reviewed Peer reviewed
Direct linkDirect link
Rozell, Timothy G.; Johnson, Jessica; Sexten, Andrea; Rhodes, Ashley E. – Journal of College Science Teaching, 2017
Students in a junior- and senior-level Anatomy and Physiology course have the opportunity to correct missed exam questions ("regrade") and earn up to half of the original points missed. The three objectives of this study were to determine if: (a) performance on the regrade assignment was correlated with scores on subsequent exams, (b)…
Descriptors: Physiology, Scores, Grades (Scholastic), Exit Examinations
Pages: 1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  10  |  11