NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
National Longitudinal Survey…1
What Works Clearinghouse Rating
Showing 31 to 38 of 38 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Vilhuber, Lars; Son, Hyuk Harry; Welch, Meredith; Wasser, David N.; Darisse, Michael – Journal of Statistics and Data Science Education, 2022
We describe a unique environment in which undergraduate students from various STEM and social science disciplines are trained in data provenance and reproducible methods, and then apply that knowledge to real, conditionally accepted manuscripts and associated replication packages. We describe in detail the recruitment, training, and regular…
Descriptors: Statistics Education, Data Science, STEM Education, Social Sciences
Peer reviewed Peer reviewed
Direct linkDirect link
Towse, John; Davies, Rob; Ball, Ellie; James, Rebecca; Gooding, Ben; Ivory, Matthew – Journal of Statistics and Data Science Education, 2022
We advocate for greater emphasis in training students about data management, within the context of supporting experience in reproducible workflows. We introduce the "L"ancaster "U"niversity "ST"atistics "RE"sources (LUSTRE) package, used to manage student research project data in psychology and build…
Descriptors: Data Analysis, Information Management, Open Source Technology, Data Science
Peer reviewed Peer reviewed
Direct linkDirect link
Ibrahim Oluwajoba Adisa; Danielle Herro; Oluwadara Abimbade; Golnaz Arastoopour Irgens – Information and Learning Sciences, 2024
Purpose: This study is part of a participatory design research project and aims to develop and study pedagogical frameworks and tools for integrating computational thinking (CT) concepts and data science practices into elementary school classrooms. Design/methodology/approach: This paper describes a pedagogical approach that uses a data science…
Descriptors: Learner Engagement, Elementary School Students, Data Science, Computation
Enakshi Saha – ProQuest LLC, 2021
We study flexible Bayesian methods that are amenable to a wide range of learning problems involving complex high dimensional data structures, with minimal tuning. We consider parametric and semiparametric Bayesian models, that are applicable to both static and dynamic data, arising from a multitude of areas such as economics, finance and…
Descriptors: Bayesian Statistics, Probability, Nonparametric Statistics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Dogucu, Mine; Çetinkaya-Rundel, Mine – Journal of Statistics and Data Science Education, 2022
It is recommended that teacher-scholars of data science adopt reproducible workflows in their research as scholars and teach reproducible workflows to their students. In this article, we propose a third dimension to reproducibility practices and recommend that regardless of whether they teach reproducibility in their courses or not, data science…
Descriptors: Statistics Education, Data Science, Teaching Methods, Instructional Materials
James LaMar Bolden – ProQuest LLC, 2023
This study explored the core competencies, technological skills, functional proficiencies, and professional experiences of data scientists at higher education institutions. The specific population of interest was higher education administrators and staff professionals identified as data scientists. This study was informed by the following guiding…
Descriptors: Higher Education, Data Science, Administrators, Professional Personnel
Peer reviewed Peer reviewed
Direct linkDirect link
Makar, Katie; Fry, Kym; English, Lyn – ZDM: Mathematics Education, 2023
Much of the mathematics that children experience in school neglect the skills increasingly needed for citizenship, particularly the power of complex data to investigate and make sense of the world. We draw on the relatively new field of data science as a multi-disciplinary approach to investigate problems through analysis of massive, non-standard,…
Descriptors: Elementary School Students, Citizenship Education, Data Science, Mathematics Education
P. Janelle McFeetors – Sage Research Methods Cases, 2016
This case study describes an experience of using constructivist grounded theory to analyze data. The project investigated how high school students improved their approaches to learning mathematics. Over 4 months, students participated in processes which supported their learning while simultaneously generating data, including interactive writing,…
Descriptors: High School Students, Mathematics Education, Data Analysis, Data Interpretation
« Previous Page | Next Page
Pages: 1  |  2  |  3