Publication Date
| In 2026 | 0 |
| Since 2025 | 5 |
| Since 2022 (last 5 years) | 48 |
| Since 2017 (last 10 years) | 88 |
| Since 2007 (last 20 years) | 103 |
Descriptor
Source
Author
Publication Type
Education Level
Audience
| Teachers | 6 |
| Practitioners | 2 |
| Media Staff | 1 |
| Researchers | 1 |
| Students | 1 |
Location
| Canada | 2 |
| Germany | 2 |
| Taiwan | 2 |
| California | 1 |
| California (Irvine) | 1 |
| District of Columbia | 1 |
| Finland | 1 |
| Hong Kong | 1 |
| Israel | 1 |
| Massachusetts | 1 |
| Missouri (Kansas City) | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Motivated Strategies for… | 1 |
| Program for International… | 1 |
What Works Clearinghouse Rating
Berg, Arthur; Hawila, Nour – Teaching Statistics: An International Journal for Teachers, 2021
This article is presented in two parts: in the first part we discuss the use of R and R-related tools when implementing a data science curriculum in the classroom and direct readers to helpful R resources in education, and in the second part, we demonstrate the use of R in exploring COVID-19 data. In particular, we explore ethnic/racial…
Descriptors: Data, Data Analysis, Programming Languages, COVID-19
Siggard, Reagan; Dupin-Bryant, Pamela A.; Mills, Robert J.; Olsen, David H. – Journal of Information Systems Education, 2022
The SQL-Explore Learning Module detailed in this teaching tip provides an opportunity for students to apply database course knowledge beyond solving traditional pre-determined Structured Query Language (SQL) coding questions. In this unique constructivist activity using the apropos 5E Instructional Model, students explore tables to locate data…
Descriptors: Programming Languages, Databases, Coding, Tables (Data)
Blanke, Tobias; Colavizza, Giovanni; van Hout, Zarah – Education for Information, 2023
The article presents an open educational resource (OER) to introduce humanities students to data analysis with Python. The article beings with positioning the OER within wider pedagogical debates in the digital humanities. The OER is built from our research encounters and committed to computational thinking rather than technicalities. Furthermore,…
Descriptors: Open Educational Resources, Data Analysis, Programming Languages, Humanities
Dorodchi, Mohsen; Dehbozorgi, Nasrin; Fallahian, Mohammadali; Pouriyeh, Seyedamin – Informatics in Education, 2021
Teaching software engineering (SWE) as a core computer science course (ACM, 2013) is a challenging task. The challenge lies in the emphasis on what a large-scale software means, implementing teamwork, and teaching abstraction in software design while simultaneously engaging students into reasonable coding tasks. The abstraction of the system…
Descriptors: Computer Science Education, Computer Software, Teaching Methods, Undergraduate Students
Vance, Eric A. – Journal of Statistics and Data Science Education, 2021
Data science is collaborative and its students should learn teamwork and collaboration. Yet it can be a challenge to fit the teaching of such skills into the data science curriculum. Team-Based Learning (TBL) is a pedagogical strategy that can help educators teach data science better by flipping the classroom to employ small-group collaborative…
Descriptors: Cooperative Learning, Data Analysis, Statistics Education, Flipped Classroom
Demir, Seda; Doguyurt, Mehmet Fatih – African Educational Research Journal, 2022
The purpose of this research was to compare the performances of the Fixed Effect Model (FEM) and the Random Effects Model (REM) in the meta-analysis studies conducted through 5, 10, 20 and 40 studies with an outlier and 4, 9, 19 and 39 studies without an outlier in terms of estimated common effect size, confidence interval coverage rate and…
Descriptors: Meta Analysis, Comparative Analysis, Research Reports, Effect Size
Jenkins, Brian C. – Journal of Economic Education, 2022
The author of this article describes a new undergraduate course where students use Python programming for macroeconomic data analysis and modeling. Students develop basic familiarity with dynamic optimization and simulating linear dynamic models, basic stochastic processes, real business cycle models, and New Keynesian business cycle models.…
Descriptors: Undergraduate Students, Programming Languages, Macroeconomics, Familiarity
Anand Jeyaraj – Journal of Information Systems Education, 2024
A significant activity in the business analytics process is enrichment, which deals with acquiring and combining data from external sources. While different strategies for enrichment are possible, it can be accomplished more efficiently through automation using Python scripts. Since business students may not be immersed in technology skills and…
Descriptors: Scaffolding (Teaching Technique), Business Administration Education, Data Analysis, Programming Languages
Weiss, Charles J. – Biochemistry and Molecular Biology Education, 2022
This article reports a workshop from the 2021 IUBMB/ASBMB Teaching Science with Big Data conference held virtually in June 2021 where participants learned to explore and visualize large quantities of protein PBD data using Jupyter notebooks and the Python programming language. This activity instructs participants using Jupyter notebooks, Python…
Descriptors: Visual Aids, Programming Languages, Data Analysis, Science Instruction
Çetinkaya-Rundel, Mine; Dogucu, Mine; Rummerfield, Wendy – Statistics Education Research Journal, 2022
Many data science applications involve generating questions, acquiring data and preparing it for analysis--be it exploratory, inferential, or modeling focused--and communicating findings. Most data science curricula address each of these steps as separate units in a course or as separate courses. Open-ended term projects, however, allow students…
Descriptors: Introductory Courses, Data Analysis, Statistics Education, Units of Study
Thakur, Khusbu; Kumar, Vinit – New Review of Academic Librarianship, 2022
A vast amount of published scholarly literature is generated every day. Today, it is one of the biggest challenges for organisations to extract knowledge embedded in published scholarly literature for business and research applications. Application of text mining is gaining popularity among researchers and applications are growing exponentially in…
Descriptors: Information Retrieval, Data Analysis, Research Methodology, Trend Analysis
Ammar, Salwa; Kim, Min Jung; Masoumi, Amir H.; Tomoiaga, Alin – Decision Sciences Journal of Innovative Education, 2023
Over the past few years, academics have undertaken initiatives to bridge the gap between theory and practice in the ever-growing field of business analytics, including implementing real-life student projects in all shapes and forms. Every year since 2015, Manhattan College has invited student teams from across North America and elsewhere in the…
Descriptors: Business, Data Analysis, Business Administration Education, Intercollegiate Cooperation
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Kim, Brian; Henke, Graham – Journal of Statistics and Data Science Education, 2021
One of the biggest hurdles of teaching data science and programming techniques to beginners is simply getting started with the technology. With multiple versions of the same coding language available (e.g., Python 2 and Python 3), various additional libraries and packages to install, as well as integrated development environments to navigate, the…
Descriptors: Computer Software, Data Analysis, Programming Languages, Computer Science Education
Green, Michael; Chen, Xiaobo – Journal of Chemical Education, 2020
For undergraduate students to be prepared for graduate school and industry, it is imperative that they understand how to merge the theoretical insights gleaned through their undergraduate education with the raw data sets acquired through materials analysis. Thus, the ability to implement data analysis is a vital skill that students should develop.…
Descriptors: Undergraduate Students, Data, Chemistry, Programming Languages

Peer reviewed
Direct link
