Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 25 |
| Since 2017 (last 10 years) | 64 |
| Since 2007 (last 20 years) | 136 |
Descriptor
| Bayesian Statistics | 159 |
| Data Analysis | 159 |
| Models | 69 |
| Computation | 38 |
| Simulation | 32 |
| Comparative Analysis | 29 |
| Prediction | 29 |
| Probability | 25 |
| Evaluation Methods | 24 |
| Correlation | 20 |
| Foreign Countries | 20 |
| More ▼ | |
Source
Author
| Kaplan, David | 5 |
| Pardos, Zachary A. | 3 |
| Zhang, Zhiyong | 3 |
| Barnes, Tiffany, Ed. | 2 |
| Beck, Joseph E. | 2 |
| Chen, Jianshen | 2 |
| Chu, Man-Wai | 2 |
| David Kaplan | 2 |
| DeSarbo, Wayne S. | 2 |
| Dongho Shin | 2 |
| Enders, Craig K. | 2 |
| More ▼ | |
Publication Type
Education Level
| Higher Education | 26 |
| Postsecondary Education | 20 |
| Secondary Education | 17 |
| Elementary Education | 11 |
| Middle Schools | 9 |
| Elementary Secondary Education | 8 |
| Junior High Schools | 8 |
| Grade 8 | 6 |
| Grade 9 | 6 |
| High Schools | 6 |
| Grade 4 | 5 |
| More ▼ | |
Audience
| Researchers | 3 |
| Students | 2 |
| Teachers | 1 |
Location
| North Carolina | 3 |
| Australia | 2 |
| China | 2 |
| Florida | 2 |
| Germany | 2 |
| Pennsylvania | 2 |
| Brazil | 1 |
| Czech Republic | 1 |
| Georgia | 1 |
| Iceland | 1 |
| Ireland | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size
Qi, Xinyue; Zhou, Shouhao; Wang, Yucai; Peterson, Christine – Research Synthesis Methods, 2022
Meta-analysis allows researchers to combine evidence from multiple studies, making it a powerful tool for synthesizing information on the safety profiles of new medical interventions. There is a critical need to identify subgroups at high risk of experiencing treatment-related toxicities. However, this remains quite challenging from a statistical…
Descriptors: Bayesian Statistics, Identification, Meta Analysis, Data Analysis
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Klima, André; Schlesinger, Thomas; Thurner, Paul W.; Küchenhoff, Helmut – Sociological Methods & Research, 2019
Our objective is the estimation of voter transitions between two consecutive parliamentary elections. Usually, such analyses have been based either on individual survey data or on aggregated data. To move beyond these methods and their respective problems, we propose the application of so-called hybrid models, which combine aggregate and…
Descriptors: Foreign Countries, Voting, Computation, Elections
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Xu, Ziqian; Hai, Jiarui; Yang, Yutong; Zhang, Zhiyong – Grantee Submission, 2022
Social network data often contain missing values because of the sensitive nature of the information collected and the dependency among the network actors. As a response, network imputation methods including simple ones constructed from network structural characteristics and more complicated model-based ones have been developed. Although past…
Descriptors: Social Networks, Network Analysis, Data Analysis, Bayesian Statistics
Tiahrt, Thomas; Hanus, Bartlomiej; Porter, Jason C. – Decision Sciences Journal of Innovative Education, 2022
Firms desire graduates capable of executing current and future business practices, many of which revolve around data. To meet those needs, we shifted the orientation of our required information systems course from technology to data. Instead of a survey of information systems, students learn the data acquisition-preparation-mining-presentation…
Descriptors: Information Systems, Information Science Education, Computer Software, Undergraduate Students
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory
Shi Pu; Yu Yan; Brandon Zhang – Journal of Educational Data Mining, 2024
We propose a novel model, Wide & Deep Item Response Theory (Wide & Deep IRT), to predict the correctness of students' responses to questions using historical clickstream data. This model combines the strengths of conventional Item Response Theory (IRT) models and Wide & Deep Learning for Recommender Systems. By leveraging clickstream…
Descriptors: Prediction, Success, Data Analysis, Learning Analytics
Winter, Sonja D.; Depaoli, Sarah – International Journal of Behavioral Development, 2020
This article illustrates the Bayesian approximate measurement invariance (MI) approach in Mplus with longitudinal data and small sample size. Approximate MI incorporates zero-mean small variance prior distributions on the differences between parameter estimates over time. Contrary to traditional invariance testing methods, where exact invariance…
Descriptors: Bayesian Statistics, Measurement, Data Analysis, Sample Size
Vaziri, Stacey; Vaziri, Baback; Novoa, Luis J.; Torabi, Elham – INFORMS Transactions on Education, 2022
The MUSIC (eMpowerment, Usefulness, Success, Interest, Caring) Model of Academic motivation was developed to help instructors promote student motivation in the classroom. This study examines relationships among student perceptions of motivation and effort compared with their performance in undergraduate business analytics courses. Specifically,…
Descriptors: Student Motivation, Introductory Courses, Business Administration Education, Data Analysis
Enakshi Saha – ProQuest LLC, 2021
We study flexible Bayesian methods that are amenable to a wide range of learning problems involving complex high dimensional data structures, with minimal tuning. We consider parametric and semiparametric Bayesian models, that are applicable to both static and dynamic data, arising from a multitude of areas such as economics, finance and…
Descriptors: Bayesian Statistics, Probability, Nonparametric Statistics, Data Analysis
Shen, Huajie; Liu, Teng; Zhang, Yueqin – International Journal of Distance Education Technologies, 2020
This study aims to create learning path navigation for target learners by discovering the correlation among micro-learning units. In this study, the learning path is defined as a sequence of learning units used to realize a learning goal, and a period used for realizing the learning goal is regarded as a learning cycle. Furthermore, the learning…
Descriptors: Correlation, Distance Education, Efficiency, Bayesian Statistics
Seide, Svenja E.; Jensen, Katrin; Kieser, Meinhard – Research Synthesis Methods, 2020
The performance of statistical methods is often evaluated by means of simulation studies. In case of network meta-analysis of binary data, however, simulations are not currently available for many practically relevant settings. We perform a simulation study for sparse networks of trials under between-trial heterogeneity and including multi-arm…
Descriptors: Bayesian Statistics, Meta Analysis, Data Analysis, Networks
Johnson, Marina E.; Misra, Ram; Berenson, Mark – Decision Sciences Journal of Innovative Education, 2022
In the era of artificial intelligence (AI), big data (BD), and digital transformation (DT), analytics students should gain the ability to solve business problems by integrating various methods. This teaching brief illustrates how two such methods--Bayesian analysis and Markov chains--can be combined to enhance student learning using the Analytics…
Descriptors: Bayesian Statistics, Programming Languages, Artificial Intelligence, Data Analysis

Peer reviewed
Direct link
