Publication Date
| In 2026 | 0 |
| Since 2025 | 4 |
| Since 2022 (last 5 years) | 8 |
| Since 2017 (last 10 years) | 10 |
| Since 2007 (last 20 years) | 11 |
Descriptor
| Data Analysis | 11 |
| Data Use | 11 |
| Student Behavior | 11 |
| Classification | 5 |
| Online Courses | 5 |
| Behavior Problems | 3 |
| Data Collection | 3 |
| Decision Making | 3 |
| Learning Analytics | 3 |
| Academic Achievement | 2 |
| Artificial Intelligence | 2 |
| More ▼ | |
Source
Author
Publication Type
| Journal Articles | 7 |
| Reports - Research | 5 |
| Collected Works - Proceedings | 2 |
| Reports - Descriptive | 2 |
| Reports - Evaluative | 2 |
| Books | 1 |
| Speeches/Meeting Papers | 1 |
Education Level
Audience
| Administrators | 1 |
| Policymakers | 1 |
Laws, Policies, & Programs
Assessments and Surveys
| Child Behavior Checklist | 1 |
What Works Clearinghouse Rating
Kathleen Lynne Lane; Katie Scarlett Lane Pelton; Nathan Allen Lane; Mark Matthew Buckman; Wendy Peia Oakes; Kandace Fleming; Rebecca E. Swinburne Romine; Emily D. Cantwell – Behavioral Disorders, 2025
We report findings of this replication study, examining the internalizing subscale (SRSS-I4) of the revised version of the Student Risk Screening Scale for Internalizing and Externalizing behavior (SRSS-IE 9) and the internalizing subscale of the Teacher Report Form (TRF). Using the sample from 13 elementary schools across three U.S. states with…
Descriptors: Data Analysis, Decision Making, Data Use, Measures (Individuals)
Luna, J. M.; Fardoun, H. M.; Padillo, F.; Romero, C.; Ventura, S. – Interactive Learning Environments, 2022
The aim of this paper is to categorize and describe different types of learners in massive open online courses (MOOCs) by means of a subgroup discovery (SD) approach based on MapReduce. The proposed SD approach, which is an extension of the well-known FP-Growth algorithm, considers emerging parallel methodologies like MapReduce to be able to cope…
Descriptors: Online Courses, Student Characteristics, Classification, Student Behavior
Mubarak, Ahmed Ali; Ahmed, Salah A. M.; Cao, Han – Interactive Learning Environments, 2023
In this study, we propose a MOOC Analytic Statistical Visual model (MOOC-ASV) to explore students' engagement in MOOC courses and predict their performance on the basis of their behaviors logged as big data in MOOC platforms. The model has multifunctions, which performs on visually analyzing learners' data by state-of-the-art techniques. The model…
Descriptors: MOOCs, Learner Engagement, Performance, Student Behavior
Kathleen Lynne Lane; Nathan Allen Lane; Mark Matthew Buckman; Katie Scarlett Lane Pelton; Kandace Fleming; Rebecca E. Swinburne Romine – Behavioral Disorders, 2025
We report the results of a convergent validity study examining the externalizing subscale (SRSS-E5, five items) of the adapted Student Risk Screening Scale for Internalizing and Externalizing (SRSS-IE 9) with the externalizing subscale of the Teacher Report Form (TRF) with two samples of K-12 students. Results of logistic regression and receiver…
Descriptors: Data Analysis, Decision Making, Data Use, Test Validity
Quin-Anne Hinrichs; Chelsea R. Johnston; Laura Feuerborn; Ashli Tyre – Beyond Behavior, 2025
Implementation of a culturally responsive positive behavioral interventions and supports (PBIS) framework is associated with positive outcomes for secondary students when implemented schoolwide. Yet, educators often report more implementation challenges in secondary school as compared to elementary school settings. Difficulties obtaining student…
Descriptors: Behavior Modification, Positive Behavior Supports, Student Behavior, Behavior Problems
Caitlin Mills, Editor; Giora Alexandron, Editor; Davide Taibi, Editor; Giosuè Lo Bosco, Editor; Luc Paquette, Editor – International Educational Data Mining Society, 2025
The University of Palermo is proud to host the 18th International Conference on Educational Data Mining (EDM) in Palermo, Italy, from July 20 to July 23, 2025. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New Goals, New Measurements, New Incentives to Learn." The theme…
Descriptors: Artificial Intelligence, Data Analysis, Computer Science Education, Technology Uses in Education
Kai Li – International Association for Development of the Information Society, 2023
Assessing students' performance in online learning could be executed not only by the traditional forms of summative assessments such as using essays, assignments, and a final exam, etc. but also by more formative assessment approaches such as interaction activities, forum posts, etc. However, it is difficult for teachers to monitor and assess…
Descriptors: Student Evaluation, Online Courses, Electronic Learning, Computer Literacy
Krumm, Andrew; Everson, Howard T.; Neisler, Julie – Journal of Learning Analytics, 2022
This paper describes a partnership-based approach for analyzing data from a learning management system (LMS) used by students in grades 6-12. The goal of the partnership was to create indicators for the ways in which students navigated digital learning activities, referred to as playlists, that were comprised of resources, pre-assessments, and…
Descriptors: Learning Management Systems, Data Analysis, Electronic Learning, Student Behavior
Chen, Weiyu; Brinton, Christopher G.; Cao, Da; Mason-Singh, Amanda; Lu, Charlton; Chiang, Mung – IEEE Transactions on Learning Technologies, 2019
We study learning outcome prediction for online courses. Whereas prior work has focused on semester-long courses with frequent student assessments, we focus on short-courses that have single outcomes assigned by instructors at the end. The lack of performance data and generally small enrollments makes the behavior of learners, captured as they…
Descriptors: Online Courses, Outcomes of Education, Prediction, Course Content
Bienkowski, Marie; Feng, Mingyu; Means, Barbara – Office of Educational Technology, US Department of Education, 2012
As more of commerce, entertainment, communication, and learning are occurring over the Web, the amount of data online activities generate is skyrocketing. Commercial entities have led the way in developing techniques for harvesting insights from this mass of data for use in identifying likely consumers of their products, in refining their products…
Descriptors: Teaching Methods, Learning Processes, Data Analysis, Barriers
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use

Peer reviewed
Direct link
