Publication Date
| In 2026 | 0 |
| Since 2025 | 1 |
| Since 2022 (last 5 years) | 16 |
| Since 2017 (last 10 years) | 26 |
| Since 2007 (last 20 years) | 48 |
Descriptor
| Data Analysis | 51 |
| Statistical Inference | 51 |
| Regression (Statistics) | 17 |
| Computation | 14 |
| Foreign Countries | 14 |
| Models | 14 |
| Bayesian Statistics | 12 |
| Data Collection | 11 |
| Sampling | 11 |
| Statistics | 11 |
| Error of Measurement | 9 |
| More ▼ | |
Source
Author
| Adam Sales | 2 |
| Anthony F. Botelho | 2 |
| Avery H. Closser | 2 |
| Dan Goldhaber | 2 |
| George Perrett | 2 |
| James Cowan | 2 |
| Vincent Dorie | 2 |
| Zhang, Zhiyong | 2 |
| Abad, Francisco J. | 1 |
| Agasisti, Tommaso | 1 |
| Ahmadian, Ahmad | 1 |
| More ▼ | |
Publication Type
Education Level
| Higher Education | 9 |
| Secondary Education | 9 |
| Postsecondary Education | 7 |
| Elementary Education | 4 |
| High Schools | 4 |
| Middle Schools | 4 |
| Grade 8 | 3 |
| Junior High Schools | 2 |
| Grade 11 | 1 |
| Grade 12 | 1 |
| Grade 3 | 1 |
| More ▼ | |
Audience
| Researchers | 1 |
Location
| Australia | 2 |
| United Kingdom (England) | 2 |
| Washington | 2 |
| California | 1 |
| Cyprus | 1 |
| Iceland | 1 |
| Indonesia (Jakarta) | 1 |
| Ireland (Dublin) | 1 |
| Israel | 1 |
| Italy | 1 |
| Louisiana | 1 |
| More ▼ | |
Laws, Policies, & Programs
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
| Program for International… | 3 |
| National Assessment of… | 1 |
| National Longitudinal Survey… | 1 |
| Teaching and Learning… | 1 |
What Works Clearinghouse Rating
| Does not meet standards | 1 |
J. E. Borgert – ProQuest LLC, 2024
Foundations of statistics research aims to establish fundamental principles guiding inference about populations under uncertainty. It is concerned with the process of learning from observations, notions of uncertainty and induction, and satisfying inferential objectives. The growing interest in predictive methods in high-stakes fields like…
Descriptors: Statistics, Research, Logical Thinking, Statistical Inference
David Bruns-Smith; Oliver Dukes; Avi Feller; Elizabeth L. Ogburn – Grantee Submission, 2024
We provide a novel characterization of augmented balancing weights, also known as automatic debiased machine learning (AutoDML). These popular "doubly robust" or "de-biased machine learning estimators" combine outcome modeling with balancing weights -- weights that achieve covariate balance directly in lieu of estimating and…
Descriptors: Regression (Statistics), Weighted Scores, Data Analysis, Robustness (Statistics)
Jennifer Hill; George Perrett; Vincent Dorie – Grantee Submission, 2023
Estimation of causal effects requires making comparisons across groups of observations exposed and not exposed to a a treatment or cause (intervention, program, drug, etc). To interpret differences between groups causally we need to ensure that they have been constructed in such a way that the comparisons are "fair." This can be…
Descriptors: Causal Models, Statistical Inference, Artificial Intelligence, Data Analysis
Vincent Dorie; George Perrett; Jennifer L. Hill; Benjamin Goodrich – Grantee Submission, 2022
A wide range of machine-learning-based approaches have been developed in the past decade, increasing our ability to accurately model nonlinear and nonadditive response surfaces. This has improved performance for inferential tasks such as estimating average treatment effects in situations where standard parametric models may not fit the data well.…
Descriptors: Statistical Inference, Causal Models, Artificial Intelligence, Data Analysis
Panchompoo Wisittanawat; Richard Lehrer – Cognition and Instruction, 2024
This report characterizes forms of dialogic support that a sixth-grade teacher generated during whole-class and small-group conversations to help students develop a practice of statistical modeling. During four weeks of instruction, students constructed and revised models to account for variability and uncertainty across a variety of random…
Descriptors: Statistics Education, Mathematical Models, Grade 6, Evaluation Methods
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2022
Takers of educational tests often receive proficiency levels instead of or in addition to scaled scores. For example, proficiency levels are reported for the Advanced Placement (AP®) and U.S. Medical Licensing examinations. Technical difficulties and other unforeseen events occasionally lead to missing item scores and hence to incomplete data on…
Descriptors: Computation, Data Analysis, Educational Testing, Accuracy
Paul A. Jewsbury; Matthew S. Johnson – Large-scale Assessments in Education, 2025
The standard methodology for many large-scale assessments in education involves regressing latent variables on numerous contextual variables to estimate proficiency distributions. To reduce the number of contextual variables used in the regression and improve estimation, we propose and evaluate principal component analysis on the covariance matrix…
Descriptors: Factor Analysis, Matrices, Regression (Statistics), Educational Assessment
Sarafoglou, Alexandra; van der Heijden, Anna; Draws, Tim; Cornelisse, Joran; Wagenmakers, Eric-Jan; Marsman, Maarten – Psychology Learning and Teaching, 2022
Current developments in the statistics community suggest that modern statistics education should be structured holistically, that is, by allowing students to work with real data and to answer concrete statistical questions, but also by educating them about alternative frameworks, such as Bayesian inference. In this article, we describe how we…
Descriptors: Bayesian Statistics, Thinking Skills, Undergraduate Students, Psychology
Wilkerson, Michelle Hoda; Lanouette, Kathryn; Shareff, Rebecca L. – Mathematical Thinking and Learning: An International Journal, 2022
Data preparation (also called "wrangling" or "cleaning") -- the evaluation and manipulation of data prior to formal analysis -- is often dismissed as a precursor to meaningful engagement with a dataset. Here, we re-envision data preparation in light of calls to prepare students for a data-rich world. Traditionally, curricular…
Descriptors: Data Science, Information Literacy, Data Analysis, Secondary School Students
Bay Arinze – Journal of Statistics and Data Science Education, 2023
Data Analytics has grown dramatically in importance and in the level of business deployments in recent years. It is used across most functional areas and applications, some of the latter including market campaigns, detecting fraud, determining credit, identifying assembly line defects, health services and many others. Indeed, the realm of…
Descriptors: Data Analysis, Elections, Simulation, Statistics Education
Avery H. Closser; Adam Sales; Anthony F. Botelho – Grantee Submission, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data on study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
Avery H. Closser; Adam Sales; Anthony F. Botelho – Educational Technology Research and Development, 2024
Emergent technologies present platforms for educational researchers to conduct randomized controlled trials (RCTs) and collect rich data to study students' performance, behavior, learning processes, and outcomes in authentic learning environments. As educational research increasingly uses methods and data collection from such platforms, it is…
Descriptors: Data Analysis, Educational Research, Randomized Controlled Trials, Sampling
David Kaplan; Kjorte Harra – OECD Publishing, 2023
This report aims to showcase the value of implementing a Bayesian framework to analyse and report results from international large-scale surveys and provide guidance to users who want to analyse the data using this approach. The motivation for this report stems from the recognition that Bayesian statistical inference is fast becoming a popular…
Descriptors: Bayesian Statistics, Statistical Inference, Data Analysis, Educational Research
Sainan Xu; Jing Lu; Jiwei Zhang; Chun Wang; Gongjun Xu – Grantee Submission, 2024
With the growing attention on large-scale educational testing and assessment, the ability to process substantial volumes of response data becomes crucial. Current estimation methods within item response theory (IRT), despite their high precision, often pose considerable computational burdens with large-scale data, leading to reduced computational…
Descriptors: Educational Assessment, Bayesian Statistics, Statistical Inference, Item Response Theory

Direct link
Peer reviewed
