NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Han Du; Hao Wu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Real data are unlikely to be exactly normally distributed. Ignoring non-normality will cause misleading and unreliable parameter estimates, standard error estimates, and model fit statistics. For non-normal data, researchers have proposed a distributionally-weighted least squares (DLS) estimator to combines the normal theory based generalized…
Descriptors: Least Squares Statistics, Matrices, Statistical Distributions, Bayesian Statistics
Peer reviewed Peer reviewed
Direct linkDirect link
Harel, Daphna; Steele, Russell J. – Journal of Educational and Behavioral Statistics, 2018
Collapsing categories is a commonly used data reduction technique; however, to date there do not exist principled methods to determine whether collapsing categories is appropriate in practice. With ordinal responses under the partial credit model, when collapsing categories, the true model for the collapsed data is no longer a partial credit…
Descriptors: Matrices, Models, Item Response Theory, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Wilderjans, Tom F.; Ceulemans, E.; Van Mechelen, I. – Psychometrika, 2012
In many research domains different pieces of information are collected regarding the same set of objects. Each piece of information constitutes a data block, and all these (coupled) blocks have the object mode in common. When analyzing such data, an important aim is to obtain an overall picture of the structure underlying the whole set of coupled…
Descriptors: Semantics, Simulation, Multivariate Analysis, Matrices
Ayers, Elizabeth; Nugent, Rebecca; Dean, Nema – International Working Group on Educational Data Mining, 2009
A fundamental goal of educational research is identifying students' current stage of skill mastery (complete/partial/none). In recent years a number of cognitive diagnosis models have become a popular means of estimating student skill knowledge. However, these models become difficult to estimate as the number of students, items, and skills grows.…
Descriptors: Data Analysis, Skills, Knowledge Level, Students
Peer reviewed Peer reviewed
Raykov, Tenko; Marcoulides, George A.; Boyd, Jeremy – Structural Equation Modeling, 2003
Illustrates how commonly available structural equation modeling programs can be used to conduct some basic matrix manipulations and generate multivariate normal data with given means and positive definite covariance matrix. Demonstrates the outlined procedure. (SLD)
Descriptors: Data Analysis, Matrices, Simulation, Structural Equation Models
Peer reviewed Peer reviewed
Raymond, Mark R.; Roberts, Dennis M. – Educational and Psychological Measurement, 1987
Data were simulated to conform to covariance patterns taken from personnel selection literature. Incomplete data matrices were treated by four methods. Treated matrices were subjected to multiple regression analyses. Resulting regression equations were compared to equations from original, complete data. Results supported using covariate…
Descriptors: Data Analysis, Matrices, Multiple Regression Analysis, Personnel Selection
Peer reviewed Peer reviewed
Direct linkDirect link
Vallejo, Guillermo; Livacic-Rojas, Pablo – Multivariate Behavioral Research, 2005
This article compares two methods for analyzing small sets of repeated measures data under normal and non-normal heteroscedastic conditions: a mixed model approach with the Kenward-Roger correction and a multivariate extension of the modified Brown-Forsythe (BF) test. These procedures differ in their assumptions about the covariance structure of…
Descriptors: Computation, Multivariate Analysis, Sample Size, Matrices
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries
Stamper, John, Ed.; Pardos, Zachary, Ed.; Mavrikis, Manolis, Ed.; McLaren, Bruce M., Ed. – International Educational Data Mining Society, 2014
The 7th International Conference on Education Data Mining held on July 4th-7th, 2014, at the Institute of Education, London, UK is the leading international forum for high-quality research that mines large data sets in order to answer educational research questions that shed light on the learning process. These data sets may come from the traces…
Descriptors: Information Retrieval, Data Processing, Data Analysis, Data Collection