NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Individuals with Disabilities…1
What Works Clearinghouse Rating
Showing 1 to 15 of 79 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Gregory Chernov – Evaluation Review, 2025
Most existing solutions to the current replication crisis in science address only the factors stemming from specific poor research practices. We introduce a novel mechanism that leverages the experts' predictive abilities to analyze the root causes of replication failures. It is backed by the principle that the most accurate predictor is the most…
Descriptors: Replication (Evaluation), Prediction, Scientific Research, Failure
Peer reviewed Peer reviewed
Direct linkDirect link
Seth Elkin-Frankston; James McIntyre; Tad T. Brunyé; Aaron L. Gardony; Clifford L. Hancock; Meghan P. O'Donovan; Victoria G. Bode; Eric L. Miller – Cognitive Research: Principles and Implications, 2025
Existing toolkits for analyzing movement dynamics in animal ecology primarily focus on individual or group behavior in habitats without predefined boundaries, while methods for studying human activity often cater to bounded environments, such as team sports played on defined fields. This leaves a gap in tools for modeling and analyzing human group…
Descriptors: Group Dynamics, Military Personnel, Measures (Individuals), Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Anthony S. DiStefano; Joshua S. Yang – Field Methods, 2024
Despite recent methodological advances in saturation, guidelines for its estimation in more complex research designs--such as ethnographic studies--have been lacking. We present an accessible, step-by-step approach to empirical assessment of data saturation, tested on a moderately sized ethnographic study with 109 combined direct observations and…
Descriptors: Sample Size, Ethnography, Research Methodology, Research Design
Peer reviewed Peer reviewed
Direct linkDirect link
Majdi Beseiso – TechTrends: Linking Research and Practice to Improve Learning, 2025
Predicting students' success is crucial in educational settings to improve academic performance and prevent dropouts. This study aimed to improve student performance prediction by combining advanced machine learning (ML) approaches. Convolutional Neural Networks (CNNs) and attention mechanisms were used for extracting relevant features from…
Descriptors: Prediction, Success, Academic Achievement, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Basnet, Ram B.; Johnson, Clayton; Doleck, Tenzin – Education and Information Technologies, 2022
The nature of teaching and learning has evolved over the years, especially as technology has evolved. Innovative application of educational analytics has gained momentum. Indeed, predictive analytics have become increasingly salient in education. Considering the prevalence of learner-system interaction data and the potential value of such data, it…
Descriptors: Prediction, Dropouts, Predictive Measurement, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Peer reviewed Peer reviewed
Direct linkDirect link
Meylan, Stephan C.; Griffiths, Thomas L. – Cognitive Science, 2021
Language research has come to rely heavily on large-scale, web-based datasets. These datasets can present significant methodological challenges, requiring researchers to make a number of decisions about how they are collected, represented, and analyzed. These decisions often concern long-standing challenges in corpus-based language research,…
Descriptors: Data Analysis, Data Collection, Word Frequency, Prediction
Peer reviewed Peer reviewed
Direct linkDirect link
Yuan Hsiao; Lee Fiorio; Jonathan Wakefield; Emilio Zagheni – Sociological Methods & Research, 2024
Obtaining reliable and timely estimates of migration flows is critical for advancing the migration theory and guiding policy decisions, but it remains a challenge. Digital data provide granular information on time and space, but do not draw from representative samples of the population, leading to biased estimates. We propose a method for…
Descriptors: Migration, Migration Patterns, Data Collection, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Shoaib, Muhammad; Sayed, Nasir; Amara, Nedra; Latif, Abdul; Azam, Sikandar; Muhammad, Sajjad – Education and Information Technologies, 2022
Technology and data analysis have evolved into a resource-rich tool for collecting, researching and comparing student achievement levels in the classroom. There are sufficient resources to discover student success through data analysis by routinely collecting extensive data on student behaviour and curriculum structure. Educational Data Mining…
Descriptors: Prediction, Artificial Intelligence, Student Behavior, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Umer, Rahila; Susnjak, Teo; Mathrani, Anuradha; Suriadi, Lim – Interactive Learning Environments, 2023
Predictive models on students' academic performance can be built by using historical data for modelling students' learning behaviour. Such models can be employed in educational settings to determine how new students will perform and in predicting whether these students should be classed as at-risk of failing a course. Stakeholders can use…
Descriptors: Prediction, Student Behavior, Models, Academic Achievement
Peer reviewed Peer reviewed
Direct linkDirect link
Doll, Jessica L. – Management Teaching Review, 2022
Workforce planning is prevalent and recognized as a good strategic practice in many organizations. However, business students may have little experience with workforce planning or workforce analytics. The purpose of this article is to present a workforce planning exercise for use in a face-to-face or online classroom setting. In this exercise,…
Descriptors: Labor Force Development, Strategic Planning, Business Administration Education, Human Resources
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Faucon, Louis; Olsen, Jennifer K.; Haklev, Stian; Dillenbourg, Pierre – Journal of Learning Analytics, 2020
In classrooms, some transitions between activities impose (quasi-)synchronicity, meaning there is a need for learners to move between activities at the same time. To make real-time decisions about when to move to the next activity, teachers need to be able to balance the progress of their students as they work at different paces. In this paper, we…
Descriptors: Classroom Techniques, Prediction, Learning Activities, Student Behavior
Peer reviewed Peer reviewed
Direct linkDirect link
Colver, Mitchell – New Directions for Institutional Research, 2019
As we become increasingly acquainted with the rich opportunities that analytics systems can provide, there is a commensurate need to consider the extent to which analytics tools are effectively integrated, with proper training, into the day-to-day functioning of higher education professionals. This chapter explores the extent to which predictive…
Descriptors: Data Collection, Data Analysis, Educational Research, Higher Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Clavié, Benjamin; Gal, Kobi – International Educational Data Mining Society, 2020
We introduce DeepPerfEmb, or DPE, a new deep-learning model that captures dense representations of students' online behaviour and meta-data about students and educational content. The model uses these representations to predict student performance. We evaluate DPE on standard datasets from the literature, showing superior performance to the…
Descriptors: Student Behavior, Electronic Learning, Metadata, Prediction
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4  |  5  |  6