Publication Date
| In 2026 | 0 |
| Since 2025 | 13 |
| Since 2022 (last 5 years) | 97 |
| Since 2017 (last 10 years) | 218 |
| Since 2007 (last 20 years) | 427 |
Descriptor
| Data Analysis | 526 |
| Prediction | 526 |
| Models | 180 |
| Foreign Countries | 114 |
| Academic Achievement | 90 |
| Data Collection | 79 |
| Artificial Intelligence | 75 |
| Comparative Analysis | 63 |
| College Students | 60 |
| Higher Education | 57 |
| Accuracy | 55 |
| More ▼ | |
Source
Author
| Baker, Ryan S. | 4 |
| Barnes, Tiffany | 3 |
| Barnes, Tiffany, Ed. | 3 |
| Cai, Zhiqiang | 3 |
| Heffernan, Neil T. | 3 |
| Hung, Jui-Long | 3 |
| Konstantinos Pouliakas | 3 |
| Andersen, Nico | 2 |
| Aydogdu, Seyhmus | 2 |
| Baker, Ryan S. J. d. | 2 |
| Bengs, Daniel | 2 |
| More ▼ | |
Publication Type
Education Level
Audience
| Teachers | 12 |
| Practitioners | 7 |
| Researchers | 2 |
| Administrators | 1 |
Location
| Australia | 14 |
| Florida | 13 |
| Turkey | 11 |
| Germany | 9 |
| United Kingdom | 9 |
| Pennsylvania | 8 |
| China | 7 |
| United States | 7 |
| Brazil | 6 |
| California | 6 |
| Indiana | 6 |
| More ▼ | |
Laws, Policies, & Programs
| Elementary and Secondary… | 4 |
| Every Student Succeeds Act… | 1 |
| Higher Education Act Title IV | 1 |
| Individuals with Disabilities… | 1 |
| No Child Left Behind Act 2001 | 1 |
| Proposition 209 (California… | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Frank Lee; Alex Algarra – Information Systems Education Journal, 2025
This case study examines employee attrition, its detrimental effects on businesses, and the potential of data analytics to address this challenge. By employing Latent Dirichlet Allocation (LDA), a sophisticated NLP technique, we delve into the underlying reasons for employee departures. Additionally, we explore using RapidMiner to develop…
Descriptors: Labor Turnover, Data Analysis, Natural Language Processing, Employees
Weihao Wang – ProQuest LLC, 2024
In this work, we introduce a novel oversampling technique, the theory of inheritance and Gower distance-based oversampling (TIGO) method, designed to address class imbalance issues in mixed categorical and continuous variables data set. Drawing inspiration from genetic inheritance principles, TIGO synthesizes new minority class data,…
Descriptors: Sampling, Statistics Education, Data Analysis, Prediction
Mahmoud Abdasalam; Ahmad Alzubi; Kolawole Iyiola – Education and Information Technologies, 2025
This study introduces an optimized ensemble deep neural network (Optimized Ensemble Deep-NN) to enhance the accuracy of predicting student grades. This model solves the problem of different and complicated student performance data by using deep neural networks, ensemble learning, and a number of optimization algorithms, such as Adam, SGD, and RMS…
Descriptors: Grades (Scholastic), Prediction, Accuracy, Artificial Intelligence
Tenzin Doleck; Pedram Agand; Dylan Pirrotta – Education and Information Technologies, 2025
As is rapidly becoming clear, data science increasingly permeates many aspects of life. Educational research recognizes the importance and complexity of learning data science. In line with this imperative, there is a growing need to investigate the factors that influence student performance in data science tasks. In this paper, we aimed to apply…
Descriptors: Prediction, Data Science, Performance, Data Analysis
Venera Nakhipova; Yerzhan Kerimbekov; Zhanat Umarova; Halil ibrahim Bulbul; Laura Suleimenova; Elvira Adylbekova – International Journal of Information and Communication Technology Education, 2024
This article introduces a novel method that integrates collaborative filtering into the naive Bayes model to enhance predicting student academic performance. The combined approach leverages collaborative user behavior analysis and probabilistic modeling, showing promising results in improved prediction precision. Collaborative Filtering explores…
Descriptors: Academic Achievement, Prediction, Cooperation, Behavior
Xiang Feng; Keyi Yuan; Xiu Guan; Longhui Qiu – Interactive Learning Environments, 2024
Datasets are critical for emotion analysis in the machine learning field. This study aims to explore emotion analysis datasets and related benchmarks in online learning, since, currently, there are very few studies that explore the same. We have scientifically labeled the topic and nine-category emotion of 4715 comment texts in online learning…
Descriptors: MOOCs, Psychological Patterns, Artificial Intelligence, Prediction
Chaewon Lee; Lan Luo; Shelbi L. Kuhlmann; Robert D. Plumley; Abigail T. Panter; Matthew L. Bernacki; Jeffrey A. Greene; Kathleen M. Gates – Journal of Learning Analytics, 2025
The increasing use of learning management systems (LMSs) generates vast amounts of clickstream data, opening new avenues for predicting learner performance. Traditionally, LMS predictive analytics have relied on either supervised machine learning or Markov models to classify learners based on predicted learning outcomes. Machine learning excels at…
Descriptors: Electronic Learning, Prediction, Data Analysis, Artificial Intelligence
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
He, Dan – ProQuest LLC, 2023
This dissertation examines the effectiveness of machine learning algorithms and feature engineering techniques for analyzing process data and predicting test performance. The study compares three classification approaches and identifies item-specific process features that are highly predictive of student performance. The findings suggest that…
Descriptors: Artificial Intelligence, Data Analysis, Algorithms, Classification
Gregory Chernov – Evaluation Review, 2025
Most existing solutions to the current replication crisis in science address only the factors stemming from specific poor research practices. We introduce a novel mechanism that leverages the experts' predictive abilities to analyze the root causes of replication failures. It is backed by the principle that the most accurate predictor is the most…
Descriptors: Replication (Evaluation), Prediction, Scientific Research, Failure
J. E. Borgert – ProQuest LLC, 2024
Foundations of statistics research aims to establish fundamental principles guiding inference about populations under uncertainty. It is concerned with the process of learning from observations, notions of uncertainty and induction, and satisfying inferential objectives. The growing interest in predictive methods in high-stakes fields like…
Descriptors: Statistics, Research, Logical Thinking, Statistical Inference
Jie Fang; Zhonglin Wen; Kit-Tai Hau – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Currently, dynamic structural equation modeling (DSEM) and residual DSEM (RDSEM) are commonly used in testing intensive longitudinal data (ILD). Researchers are interested in ILD mediation models, but their analyses are challenging. The present paper mathematically derived, empirically compared, and step-by-step demonstrated three types (i.e.,…
Descriptors: Structural Equation Models, Mediation Theory, Data Analysis, Longitudinal Studies
Napol Rachatasumrit; Paulo F. Carvalho; Kenneth R. Koedinger – International Educational Data Mining Society, 2024
What does it mean for a model to be a better model? One conceptualization, indeed a common one in Educational Data Mining, is that a better model is the one that fits the data better, that is, higher prediction accuracy. However, oftentimes, models that maximize prediction accuracy do not provide meaningful parameter estimates, making them less…
Descriptors: Data Analysis, Models, Prediction, Accuracy
Jade Mai Cock; Hugues Saltini; Haoyu Sheng; Riya Ranjan; Richard Davis; Tanja Käser – International Educational Data Mining Society, 2024
Predictive models play a pivotal role in education by aiding learning, teaching, and assessment processes. However, they have the potential to perpetuate educational inequalities through algorithmic biases. This paper investigates how behavioral differences across demographic groups of different sizes propagate through the student success modeling…
Descriptors: Demography, Statistical Bias, Algorithms, Behavior
Seth Elkin-Frankston; James McIntyre; Tad T. Brunyé; Aaron L. Gardony; Clifford L. Hancock; Meghan P. O'Donovan; Victoria G. Bode; Eric L. Miller – Cognitive Research: Principles and Implications, 2025
Existing toolkits for analyzing movement dynamics in animal ecology primarily focus on individual or group behavior in habitats without predefined boundaries, while methods for studying human activity often cater to bounded environments, such as team sports played on defined fields. This leaves a gap in tools for modeling and analyzing human group…
Descriptors: Group Dynamics, Military Personnel, Measures (Individuals), Computer Software

Peer reviewed
Direct link
