Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 3 |
| Since 2007 (last 20 years) | 9 |
Descriptor
| Bayesian Statistics | 9 |
| Data Analysis | 9 |
| Knowledge Level | 9 |
| Intelligent Tutoring Systems | 7 |
| Models | 7 |
| Prediction | 6 |
| Comparative Analysis | 5 |
| Computation | 4 |
| Mathematics | 4 |
| Feedback (Response) | 3 |
| Learning Processes | 3 |
| More ▼ | |
Author
| Barnes, Tiffany, Ed. | 2 |
| Beck, Joseph E. | 2 |
| Ayers, Elizabeth | 1 |
| Corbett, Albert | 1 |
| Dean, Nema | 1 |
| Desmarais, Michel, Ed. | 1 |
| Eagle, Michael | 1 |
| Gervet, Theophile | 1 |
| Gong, Yue | 1 |
| Hershkovitz, Arnon, Ed. | 1 |
| Hu, Xiangen, Ed. | 1 |
| More ▼ | |
Publication Type
| Speeches/Meeting Papers | 6 |
| Reports - Research | 4 |
| Collected Works - Proceedings | 2 |
| Reports - Evaluative | 2 |
| Journal Articles | 1 |
| Reports - Descriptive | 1 |
Education Level
Audience
Location
| Pennsylvania | 2 |
| Australia | 1 |
| China | 1 |
| Czech Republic | 1 |
| Israel | 1 |
| Massachusetts | 1 |
| Netherlands | 1 |
| North Carolina | 1 |
| Slovakia | 1 |
| Spain | 1 |
| Utah | 1 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
| Massachusetts Comprehensive… | 1 |
What Works Clearinghouse Rating
Gervet, Theophile; Koedinger, Ken; Schneider, Jeff; Mitchell, Tom – Journal of Educational Data Mining, 2020
Intelligent tutoring systems (ITSs) teach skills using learning-by-doing principles and provide learners with individualized feedback and materials adapted to their level of understanding. Given a learner's history of past interactions with an ITS, a learner performance model estimates the current state of a learner's knowledge and predicts her…
Descriptors: Learning Processes, Intelligent Tutoring Systems, Feedback (Response), Knowledge Level
Eagle, Michael; Corbett, Albert; Stamper, John; Mclaren, Bruce – International Educational Data Mining Society, 2018
In this work we use prior to tutor-session data to generate an individualized student knowledge model. Intelligent learning environments use student models to individualize curriculum sequencing and help messages. Researchers decompose the learning tasks into sets of Knowledge Components (KCs) that represent individual units of knowledge; the…
Descriptors: Individualized Instruction, Models, Data Analysis, Knowledge Level
Xiong, Xiaolu; Zhao, Siyuan; Van Inwegen, Eric G.; Beck, Joseph E. – International Educational Data Mining Society, 2016
Over the last couple of decades, there have been a large variety of approaches towards modeling student knowledge within intelligent tutoring systems. With the booming development of deep learning and large-scale artificial neural networks, there have been empirical successes in a number of machine learning and data mining applications, including…
Descriptors: Intelligent Tutoring Systems, Computer Software, Bayesian Statistics, Knowledge Level
Khajah, Mohammad; Lindsey, Robert V.; Mozer, Michael C. – International Educational Data Mining Society, 2016
In theoretical cognitive science, there is a tension between highly structured models whose parameters have a direct psychological interpretation and highly complex, general-purpose models whose parameters and representations are difficult to interpret. The former typically provide more insight into cognition but the latter often perform better.…
Descriptors: Bayesian Statistics, Data Analysis, Prediction, Intelligent Tutoring Systems
Interleaved Practice with Multiple Representations: Analyses with Knowledge Tracing Based Techniques
Rau, Martina A.; Pardos, Zachary A. – International Educational Data Mining Society, 2012
The goal of this paper is to use Knowledge Tracing to augment the results obtained from an experiment that investigated the effects of practice schedules using an intelligent tutoring system for fractions. Specifically, this experiment compared different practice schedules of multiple representations of fractions: representations were presented to…
Descriptors: Intelligent Tutoring Systems, Mathematics, Knowledge Level, Scheduling
Ayers, Elizabeth; Nugent, Rebecca; Dean, Nema – International Working Group on Educational Data Mining, 2009
A fundamental goal of educational research is identifying students' current stage of skill mastery (complete/partial/none). In recent years a number of cognitive diagnosis models have become a popular means of estimating student skill knowledge. However, these models become difficult to estimate as the number of students, items, and skills grows.…
Descriptors: Data Analysis, Skills, Knowledge Level, Students
Rai, Dovan; Gong, Yue; Beck, Joseph E. – International Working Group on Educational Data Mining, 2009
Student modeling is a widely used approach to make inference about a student's attributes like knowledge, learning, etc. If we wish to use these models to analyze and better understand student learning there are two problems. First, a model's ability to predict student performance is at best weakly related to the accuracy of any one of its…
Descriptors: Data Analysis, Statistical Analysis, Probability, Models
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use
Barnes, Tiffany, Ed.; Desmarais, Michel, Ed.; Romero, Cristobal, Ed.; Ventura, Sebastian, Ed. – International Working Group on Educational Data Mining, 2009
The Second International Conference on Educational Data Mining (EDM2009) was held at the University of Cordoba, Spain, on July 1-3, 2009. EDM brings together researchers from computer science, education, psychology, psychometrics, and statistics to analyze large data sets to answer educational research questions. The increase in instrumented…
Descriptors: Data Analysis, Educational Research, Conferences (Gatherings), Foreign Countries

Peer reviewed
