NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Researchers2
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 43 results Save | Export
Enakshi Saha – ProQuest LLC, 2021
We study flexible Bayesian methods that are amenable to a wide range of learning problems involving complex high dimensional data structures, with minimal tuning. We consider parametric and semiparametric Bayesian models, that are applicable to both static and dynamic data, arising from a multitude of areas such as economics, finance and…
Descriptors: Bayesian Statistics, Probability, Nonparametric Statistics, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Edoardo Saccenti – Teaching Statistics: An International Journal for Teachers, 2024
Principal Component Analysis (PCA) is a powerful statistical technique for reducing the complexity of data and making patterns and relationships within the data more easily understandable. By using PCA, students can learn to identify the most important features of a data set, visualize relationships between variables, and make informed decisions…
Descriptors: Factor Analysis, Data Analysis, Information Literacy, Visualization
Minju Hong – ProQuest LLC, 2022
Reliability indicates the internal consistency of a test. In educational studies, reliability is a key feature for a test. Researchers have proposed many traditional reliability estimates, such as coefficient alpha and coefficient omega. However, traditional reliability indices do not deal with the data hierarchy, even though the multilevel…
Descriptors: Hierarchical Linear Modeling, Factor Analysis, Factor Structure, Test Reliability
Peer reviewed Peer reviewed
Direct linkDirect link
Paul A. Jewsbury; Matthew S. Johnson – Large-scale Assessments in Education, 2025
The standard methodology for many large-scale assessments in education involves regressing latent variables on numerous contextual variables to estimate proficiency distributions. To reduce the number of contextual variables used in the regression and improve estimation, we propose and evaluate principal component analysis on the covariance matrix…
Descriptors: Factor Analysis, Matrices, Regression (Statistics), Educational Assessment
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Selvi, Hüseyin; Alici, Devrim; Uzun, Nezaket Bilge – Asian Journal of Education and Training, 2020
This study aims to comparatively examine the resultant findings by testing the measurement invariance with structural equation modeling in cases where the missing data is handled using the expectation-maximization (EM), regression imputation, and mean substitution methods in the complete data matrix and the 5% missing data matrix that is randomly…
Descriptors: Error of Measurement, Structural Equation Models, Attitude Measures, Student Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Legacy, Chelsey; Zieffler, Andrew; Fry, Elizabeth Brondos; Le, Laura – Statistics Education Research Journal, 2022
The influx of data and the advances in computing have led to calls to update the introductory statistics curriculum to better meet the needs of the contemporary workforce. To this end, we developed the COMputational Practices in Undergraduate TEaching of Statistics (COMPUTES) instrument, which can be used to measure the extent to which computation…
Descriptors: Statistics Education, Introductory Courses, Undergraduate Students, Teaching Methods
Vaske, Jerry J. – Sagamore-Venture, 2019
Data collected from surveys can result in hundreds of variables and thousands of respondents. This implies that time and energy must be devoted to (a) carefully entering the data into a database, (b) running preliminary analyses to identify any problems (e.g., missing data, potential outliers), (c) checking the reliability and validity of the…
Descriptors: Surveys, Theories, Hypothesis Testing, Effect Size
Peer reviewed Peer reviewed
Direct linkDirect link
Levy, Michal; Gumpel, Thomas P. – Journal of School Violence, 2018
This study explores correlations between bystanders' intervention styles by means of the bullying circle model. Three aims were examined in this study. First, we reevaluated the number and type of bystander intervention styles in aggressive school incidents. Second, we examined the association between reports of relational aggression and…
Descriptors: Audiences, Intervention, Bullying, Prevention
Peer reviewed Peer reviewed
Direct linkDirect link
Dardick, William R.; Mislevy, Robert J. – Educational and Psychological Measurement, 2016
A new variant of the iterative "data = fit + residual" data-analytical approach described by Mosteller and Tukey is proposed and implemented in the context of item response theory psychometric models. Posterior probabilities from a Bayesian mixture model of a Rasch item response theory model and an unscalable latent class are expressed…
Descriptors: Bayesian Statistics, Probability, Data Analysis, Item Response Theory
Peer reviewed Peer reviewed
Direct linkDirect link
Valdés Aguirre, Benjamín; Ramírez Uresti, Jorge A.; du Boulay, Benedict – International Journal of Artificial Intelligence in Education, 2016
Sharing user information between systems is an area of interest for every field involving personalization. Recommender Systems are more advanced in this aspect than Intelligent Tutoring Systems (ITSs) and Intelligent Learning Environments (ILEs). A reason for this is that the user models of Intelligent Tutoring Systems and Intelligent Learning…
Descriptors: Intelligent Tutoring Systems, Models, Open Source Technology, Computers
Peer reviewed Peer reviewed
Direct linkDirect link
Köse, Alper – Educational Research and Reviews, 2014
The primary objective of this study was to examine the effect of missing data on goodness of fit statistics in confirmatory factor analysis (CFA). For this aim, four missing data handling methods; listwise deletion, full information maximum likelihood, regression imputation and expectation maximization (EM) imputation were examined in terms of…
Descriptors: Data Analysis, Data Collection, Statistical Analysis, Evaluation Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Saelzer, Christine; Lenski, Anna Eva – Journal of Education for Students Placed at Risk, 2016
Truant student behavior can be due to various reasons. Some of these reasons are located in schools. So far, little is known about how student perception of school rules is related to truancy. This study aims to identify types of school attendance policies and how these policies are associated with individual truancy. Self-reports from the German…
Descriptors: Foreign Countries, Secondary School Students, Student Attitudes, Adolescent Attitudes
Peer reviewed Peer reviewed
Direct linkDirect link
Lu, Owen H. T.; Huang, Anna Y. Q.; Huang, Jeff C. H.; Lin, Albert J. Q.; Ogata, Hiroaki; Yang, Stephen J. H. – Educational Technology & Society, 2018
Blended learning combines online digital resources with traditional classroom activities and enables students to attain higher learning performance through well-defined interactive strategies involving online and traditional learning activities. Learning analytics is a conceptual framework and is a part of our Precision education used to analyze…
Descriptors: Blended Learning, Educational Technology, Technology Uses in Education, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Tchumtchoua, Sylvie; Dey, Dipak K. – Psychometrika, 2012
This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…
Descriptors: Factor Analysis, Bayesian Statistics, Behavioral Sciences, Social Sciences
Peer reviewed Peer reviewed
Direct linkDirect link
Jia, Fan; Moore, E. Whitney G.; Kinai, Richard; Crowe, Kelly S.; Schoemann, Alexander M.; Little, Todd D. – International Journal of Behavioral Development, 2014
Utilizing planned missing data (PMD) designs (ex. 3-form surveys) enables researchers to ask participants fewer questions during the data collection process. An important question, however, is just how few participants are needed to effectively employ planned missing data designs in research studies. This article explores this question by using…
Descriptors: Data Analysis, Statistical Inference, Error of Measurement, Computation
Previous Page | Next Page »
Pages: 1  |  2  |  3