Publication Date
| In 2026 | 0 |
| Since 2025 | 3 |
| Since 2022 (last 5 years) | 27 |
| Since 2017 (last 10 years) | 63 |
| Since 2007 (last 20 years) | 140 |
Descriptor
Source
Author
| Chandler, Kathryn | 5 |
| Nolin, Mary Jo | 4 |
| Abraham, Sameer Y. | 3 |
| Bielick, Stacey | 3 |
| Chapman, Christopher | 3 |
| Creighton, Sean | 3 |
| Ingels, Steven J. | 3 |
| Johnson, Robert A. | 3 |
| Kim, Kwang | 3 |
| Kleiner, Brian | 3 |
| Koch, Shaun | 3 |
| More ▼ | |
Publication Type
Education Level
Audience
| Researchers | 7 |
| Practitioners | 3 |
| Administrators | 2 |
| Teachers | 2 |
Location
| Turkey | 11 |
| Australia | 4 |
| United States | 3 |
| California | 2 |
| China | 2 |
| Ethiopia | 2 |
| Germany | 2 |
| Japan | 2 |
| Nigeria | 2 |
| Pennsylvania | 2 |
| Spain | 2 |
| More ▼ | |
Laws, Policies, & Programs
| Elementary and Secondary… | 1 |
| No Child Left Behind Act 2001 | 1 |
Assessments and Surveys
What Works Clearinghouse Rating
Dongho Shin; Yongyun Shin; Nao Hagiwara – Grantee Submission, 2025
We consider Bayesian estimation of a hierarchical linear model (HLM) from partially observed data, assumed to be missing at random, and small sample sizes. A vector of continuous covariates C includes cluster-level partially observed covariates with interaction effects. Due to small sample sizes from 37 patient-physician encounters repeatedly…
Descriptors: Bayesian Statistics, Hierarchical Linear Modeling, Multivariate Analysis, Data Analysis
Anthony S. DiStefano; Joshua S. Yang – Field Methods, 2024
Despite recent methodological advances in saturation, guidelines for its estimation in more complex research designs--such as ethnographic studies--have been lacking. We present an accessible, step-by-step approach to empirical assessment of data saturation, tested on a moderately sized ethnographic study with 109 combined direct observations and…
Descriptors: Sample Size, Ethnography, Research Methodology, Research Design
Jamelia Harris – Field Methods, 2024
Not knowing the population size is a common problem in data-limited contexts. Drawing on work in Sierra Leone, this short take outlines a four-step solution to this problem: (1) estimate the population size using expert interviews; (2) verify estimates using interviews with participants sampled; (3) triangulate using secondary data; and (4)…
Descriptors: Foreign Countries, Sample Size, Surveys, Computation
Oleson, Jacob J.; Jones, Michelle A.; Jorgensen, Erik J.; Wu, Yu-Hsiang – Journal of Speech, Language, and Hearing Research, 2022
Purpose: The analysis of Ecological Momentary Assessment (EMA) data can be difficult to conceptualize due to the complexity of how the data are collected. The goal of this tutorial is to provide an overview of statistical considerations for analyzing observational data arising from EMA studies. Method: EMA data are collected in a variety of ways,…
Descriptors: Experience, Surveys, Measurement Techniques, Statistical Analysis
Yan Xia; Selim Havan – Educational and Psychological Measurement, 2024
Although parallel analysis has been found to be an accurate method for determining the number of factors in many conditions with complete data, its application under missing data is limited. The existing literature recommends that, after using an appropriate multiple imputation method, researchers either apply parallel analysis to every imputed…
Descriptors: Data Interpretation, Factor Analysis, Statistical Inference, Research Problems
Xiaohui Luo; Yueqin Hu – Structural Equation Modeling: A Multidisciplinary Journal, 2024
Intensive longitudinal data has been widely used to examine reciprocal or causal relations between variables. However, these variables may not be temporally aligned. This study examined the consequences and solutions of the problem of temporal misalignment in intensive longitudinal data based on dynamic structural equation models. First the impact…
Descriptors: Structural Equation Models, Longitudinal Studies, Data Analysis, Causal Models
J. Vincent Nix; Yi-Chin Wu; Lan Misty Song; Joseph D. Levy – Research & Practice in Assessment, 2024
Traditionally, assessment professionals use analyses relying upon null hypothesis significance testing (NHST), but those tools have limitations when analyzing small samples or disaggregated data. This study used common NHST analytical techniques, compared their results, and then explored an alternative technique that perhaps allows for a more…
Descriptors: Sample Size, Statistical Significance, MOOCs, Geographic Location
Benz, Gregor; Buhlinger, Carsten; Ludwig, Tobias – Physics Education, 2022
With the availability of educational digital data acquisition systems, it has also become possible in physics education to generate 'big' data sets by (a) measuring multiple variables simultaneously, (b) increasing the sample rate, (c) extending the measurement duration, or (d) choosing a combination among these three options. In the context of…
Descriptors: Physics, Science Instruction, Learning Analytics, Data Analysis
Sara Samy Abbas Mohamed El-kholy – Education and Information Technologies, 2025
This article explores the potential of artificial intelligence (AI) for academic advising. Specifically, it examines how AI-powered machine interpretation and data analysis can be used to deliver advising services anytime, anywhere. This system would eliminate the need for students to physically meet with advisors and could answer their…
Descriptors: Artificial Intelligence, Academic Advising, Data Analysis, Delivery Systems
Paul A. Jewsbury; Matthew S. Johnson – Large-scale Assessments in Education, 2025
The standard methodology for many large-scale assessments in education involves regressing latent variables on numerous contextual variables to estimate proficiency distributions. To reduce the number of contextual variables used in the regression and improve estimation, we propose and evaluate principal component analysis on the covariance matrix…
Descriptors: Factor Analysis, Matrices, Regression (Statistics), Educational Assessment
Bethencourt-Aguilar, Anabel; Castellanos-Nieves, Dagoberto; Sosa-Alonso, Juan-José; Area-Moreira, Manuel – Journal of New Approaches in Educational Research, 2023
In the context of Artificial Intelligence, Generative Adversarial Nets (GANs) allow the creation and reproduction of artificial data from real datasets. The aims of this work are to seek to verify the equivalence of synthetic data with real data and to verify the possibilities of GAN in educational research. The research methodology begins with…
Descriptors: Artificial Intelligence, Networks, Educational Technology, Educational Research
Anthony Gambino – Society for Research on Educational Effectiveness, 2021
Analysis of symmetrically predicted endogenous subgroups (ASPES) is an approach to assessing heterogeneity in an ITT effect from a randomized experiment when an intermediate variable (one that is measured after random assignment and before outcomes) is hypothesized to be related to the ITT effect, but is only measured in one group. For example,…
Descriptors: Randomized Controlled Trials, Prediction, Program Evaluation, Credibility
Peer reviewedDongho Shin – Grantee Submission, 2024
We consider Bayesian estimation of a hierarchical linear model (HLM) from small sample sizes. The continuous response Y and covariates C are partially observed and assumed missing at random. With C having linear effects, the HLM may be efficiently estimated by available methods. When C includes cluster-level covariates having interactive or other…
Descriptors: Bayesian Statistics, Computation, Hierarchical Linear Modeling, Data Analysis
Clare Baek; Tenzin Doleck – Knowledge Management & E-Learning, 2024
We examined how Learning Analytics literature represents participants from diverse societies by comparing the studies published with samples from WEIRD (Western, Industrialized, Rich, Democratic) nations versus non-WEIRD nations. By analyzing the Learning Analytics studies published during 2015-2019 (N = 360), we found that most of the studies…
Descriptors: Learning Analytics, Educational Research, Sample Size, Literature Reviews
Du, Han; Enders, Craig; Keller, Brian; Bradbury, Thomas N.; Karney, Benjamin R. – Grantee Submission, 2022
Missing data are exceedingly common across a variety of disciplines, such as educational, social, and behavioral science areas. Missing not at random (MNAR) mechanism where missingness is related to unobserved data is widespread in real data and has detrimental consequence. However, the existing MNAR-based methods have potential problems such as…
Descriptors: Bayesian Statistics, Data Analysis, Computer Simulation, Sample Size

Direct link
