NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
What Works Clearinghouse Rating
Showing 1 to 15 of 53 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Beechey, Timothy – Journal of Speech, Language, and Hearing Research, 2023
Purpose: This article provides a tutorial introduction to ordinal pattern analysis, a statistical analysis method designed to quantify the extent to which hypotheses of relative change across experimental conditions match observed data at the level of individuals. This method may be a useful addition to familiar parametric statistical methods…
Descriptors: Hypothesis Testing, Multivariate Analysis, Data Analysis, Statistical Inference
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip – Journal of Educational and Behavioral Statistics, 2022
Takers of educational tests often receive proficiency levels instead of or in addition to scaled scores. For example, proficiency levels are reported for the Advanced Placement (AP®) and U.S. Medical Licensing examinations. Technical difficulties and other unforeseen events occasionally lead to missing item scores and hence to incomplete data on…
Descriptors: Computation, Data Analysis, Educational Testing, Accuracy
Albaqshi, Amani Mohammed H. – ProQuest LLC, 2017
Functional Data Analysis (FDA) has attracted substantial attention for the last two decades. Within FDA, classifying curves into two or more categories is consistently of interest to scientists, but multi-class prediction within FDA is challenged in that most classification tools have been limited to binary response applications. The functional…
Descriptors: Least Squares Statistics, Regression (Statistics), Statistical Analysis, Data Analysis
Lijin Zhang; Xueyang Li; Zhiyong Zhang – Grantee Submission, 2023
The thriving developer community has a significant impact on the widespread use of R software. To better understand this community, we conducted a study analyzing all R packages available on CRAN. We identified the most popular topics of R packages by text mining the package descriptions. Additionally, using network centrality measures, we…
Descriptors: Computer Software, Programming Languages, Data Analysis, Visual Aids
Peer reviewed Peer reviewed
Direct linkDirect link
Doval, Eduardo; Delicado, Pedro – Journal of Educational and Behavioral Statistics, 2020
We propose new methods for identifying and classifying aberrant response patterns (ARPs) by means of functional data analysis. These methods take the person response function (PRF) of an individual and compare it with the pattern that would correspond to a generic individual of the same ability according to the item-person response surface. ARPs…
Descriptors: Response Style (Tests), Data Analysis, Identification, Classification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Villanueva Manjarres, Andrés; Moreno Sandoval, Luis Gabriel; Salinas Suárez, Martha Janneth – Digital Education Review, 2018
Educational Data Mining is an emerging discipline which seeks to develop methods to explore large amounts of data from educational settings, in order to understand students' behavior, interests and results in a better way. In recent years there have been various works related to this specialty and multiple data mining techniques derived from this…
Descriptors: Information Retrieval, Data Analysis, Educational Environment, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Shero, Jeffrey A.; Al Otaiba, Stephanie; Schatschneider, Chris; Hart, Sara A. – Journal of Experimental Education, 2022
Many of the analytical models commonly used in educational research often aim to maximize explained variance and identify variable importance within models. These models are useful for understanding general ideas and trends, but give limited insight into the individuals within said models. Data envelopment analysis (DEA), is a method rooted in…
Descriptors: Data Analysis, Educational Research, Nonparametric Statistics, Efficiency
Peer reviewed Peer reviewed
Direct linkDirect link
Zieffler, Andrew; Justice, Nicola; delMas, Robert; Huberty, Michael D. – Journal of Statistics and Data Science Education, 2021
Statistical modeling continues to gain prominence in the secondary curriculum, and recent recommendations to emphasize data science and computational thinking may soon position algorithmic models into the school curriculum. Many teachers' preparation for and experiences teaching statistical modeling have focused on probabilistic models.…
Descriptors: Mathematical Models, Thinking Skills, Teaching Methods, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Sinharay, Sandip; Zhang, Mo; Deane, Paul – Applied Measurement in Education, 2019
Analysis of keystroke logging data is of increasing interest, as evident from a substantial amount of recent research on the topic. Some of the research on keystroke logging data has focused on the prediction of essay scores from keystroke logging features, but linear regression is the only prediction method that has been used in this research.…
Descriptors: Scores, Prediction, Writing Processes, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
de Carvalho, Walisson Ferreira; Zárate, Luis Enrique – International Journal of Information and Learning Technology, 2021
Purpose: The paper aims to present a new two stage local causal learning algorithm -- HEISA. In the first stage, the algorithm discoveries the subset of features that better explains a target variable. During the second stage, computes the causal effect, using partial correlation, of each feature of the selected subset. Using this new algorithm,…
Descriptors: Causal Models, Algorithms, Learning Analytics, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Gerbing, David W. – Journal of Statistics and Data Science Education, 2021
R and Python are commonly used software languages for data analytics. Using these languages as the course software for the introductory course gives students practical skills for applying statistical concepts to data analysis. However, the reliance upon the command line is perceived by the typical nontechnical introductory student as sufficiently…
Descriptors: Statistics Education, Teaching Methods, Introductory Courses, Programming Languages
Peer reviewed Peer reviewed
Direct linkDirect link
Park, Jungkyu; Yu, Hsiu-Ting – Educational and Psychological Measurement, 2016
The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In…
Descriptors: Hierarchical Linear Modeling, Nonparametric Statistics, Data Analysis, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Kemper, Lorenz; Vorhoff, Gerrit; Wigger, Berthold U. – European Journal of Higher Education, 2020
We perform two approaches of machine learning, logistic regressions and decision trees, to predict student dropout at the Karlsruhe Institute of Technology (KIT). The models are computed on the basis of examination data, i.e. data available at all universities without the need of specific collection. Therefore, we propose a methodical approach…
Descriptors: Foreign Countries, Predictor Variables, Potential Dropouts, School Holding Power
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bulut, Okan; Yavuz, Hatice Cigdem – International Journal of Assessment Tools in Education, 2019
Educational data mining (EDM) has been a rapidly growing research field over the last decade and enabled researchers to discover patterns and trends in education with more sophisticated methods. EDM offers promising solutions to complex educational problems. Given the rapid increase in the availability of big data in education and software…
Descriptors: Data Analysis, Educational Research, Educational Researchers, Computer Software
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Cui, Yang; Chu, Man-Wai; Chen, Fu – Journal of Educational Data Mining, 2019
Digital game-based assessments generate student process data that is much more difficult to analyze than traditional assessments. The formative nature of game-based assessments permits students, through applying and practicing the targeted knowledge and skills during gameplay, to gain experiences, receive immediate feedback, and as a result,…
Descriptors: Educational Games, Student Evaluation, Data Analysis, Bayesian Statistics
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4