NotesFAQContact Us
Collection
Advanced
Search Tips
Audience
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Showing all 13 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Guiyun Feng; Honghui Chen – Education and Information Technologies, 2025
Data mining has been successfully and widely utilized in educational information systems, and an important research field has been formed, which is educational data mining. Process mining inherits the characteristics of data mining which can not only use historical data in the system to analyze learning behavior and predict academic performance,…
Descriptors: Educational Research, Artificial Intelligence, Data Use, Algorithms
Peer reviewed Peer reviewed
Direct linkDirect link
Jing Chen; Tianhui Chen – Journal of Computer Assisted Learning, 2025
Background: The creation of Intelligent Supervision Platforms in universities leverages Big Data for robust monitoring and decision-making, which significantly enhances overall efficiency and adaptability in educational environments. Objectives: This research focuses on evaluating how Big Data-driven Intelligent Supervision Platforms in…
Descriptors: Educational Change, Higher Education, Universities, Supervision
Keeanna Jessica Marie Warren – ProQuest LLC, 2022
Teacher turnover continues to be a significant problem in the United States. Teacher turnover is expensive because it costs money to continue recruiting, hiring, and training new teachers to replace those leaving (Carver-Thomas & Darling-Hammond, 2017). Most important though, teacher turnover hurts student achievement and success (Sorensen…
Descriptors: Data Analysis, Prediction, Teacher Persistence, Faculty Mobility
Peer reviewed Peer reviewed
Direct linkDirect link
Krista Bixler; Marjorie Ceballos – Leadership and Policy in Schools, 2025
Instructional leadership is a complex dimension, which requires that principals possess expertise in goal setting, leading the instructional program, and creating the conditions for a successful school environment. Effective instructional leaders manage the instructional program by planning, coordinating, and evaluating the work of teachers and…
Descriptors: Principals, Instructional Leadership, Artificial Intelligence, Educational Technology
Peer reviewed Peer reviewed
Direct linkDirect link
Yang, Chunsheng; Chiang, Feng-Kuang; Cheng, Qiangqiang; Ji, Jun – Journal of Educational Computing Research, 2021
Machine learning-based modeling technology has recently become a powerful technique and tool for developing models for explaining, predicting, and describing system/human behaviors. In developing intelligent education systems or technologies, some research has focused on applying unique machine learning algorithms to build the ad-hoc student…
Descriptors: Artificial Intelligence, Intelligent Tutoring Systems, Data Use, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Matthew T. Marino; Eleazar Vasquez III – Journal of Special Education Leadership, 2024
This manuscript presents an exploratory mixed-methods case study examining the impact of artificial intelligence (AI) in the form of generative pretrained transformers (GPTs) and large language models on special education administrative practices in one school district in the Northeast United States. AI holds tremendous potential to positively…
Descriptors: Special Education, Administrators, Artificial Intelligence, Data Use
Shaurya Rohatgi – ProQuest LLC, 2023
The exponential growth of digital libraries and the proliferation of scholarly content in electronic formats have made data mining and information retrieval essential tools for effectively managing, organizing, and disseminating knowledge. This thesis provides a comprehensive analysis of the advancements and challenges in these fields, with a…
Descriptors: Data Use, Data Analysis, Information Retrieval, Database Design
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Caitlin Mills, Editor; Giora Alexandron, Editor; Davide Taibi, Editor; Giosuè Lo Bosco, Editor; Luc Paquette, Editor – International Educational Data Mining Society, 2025
The University of Palermo is proud to host the 18th International Conference on Educational Data Mining (EDM) in Palermo, Italy, from July 20 to July 23, 2025. EDM is the annual flagship conference of the International Educational Data Mining Society. This year's theme is "New Goals, New Measurements, New Incentives to Learn." The theme…
Descriptors: Artificial Intelligence, Data Analysis, Computer Science Education, Technology Uses in Education
Peer reviewed Peer reviewed
Direct linkDirect link
Yousafzai, Bashir Khan; Hayat, Maqsood; Afzal, Sher – Education and Information Technologies, 2020
The presented work is a student marks and grade prediction system using supervised machine learning techniques, the system is developed on the historic performance of students. The data used in this research is collected from Federal Board of Intermediate and Secondary Education Islamabad Pakistan, there are 7 regions in FBISE i.e. Punjab, Sindh,…
Descriptors: Artificial Intelligence, Foreign Countries, Prediction, Grades (Scholastic)
Peer reviewed Peer reviewed
Direct linkDirect link
Kitto, Kirsty; Knight, Simon – British Journal of Educational Technology, 2019
Artificial intelligence and data analysis (AIDA) are increasingly entering the field of education. Within this context, the subfield of learning analytics (LA) has, since its inception, had a strong emphasis upon ethics, with numerous checklists and frameworks proposed to ensure that student privacy is respected and potential harms avoided. Here,…
Descriptors: Ethics, Learning Analytics, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Aulck, Lovenoor; Nambi, Dev; West, Jevin – International Educational Data Mining Society, 2020
Effectively estimating student enrollment and recruiting students is critical to the success of any university. However, despite having an abundance of data and researchers at the forefront of data science, traditional universities are not fully leveraging machine learning and data mining approaches to improve their enrollment management…
Descriptors: Resource Allocation, Scholarships, Artificial Intelligence, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Mason, Claire M.; Chen, Haohui; Evans, David; Walker, Gavin – International Journal of Information and Learning Technology, 2023
Purpose: This paper aims to demonstrate how skills taxonomies can be used in combination with machine learning to integrate diverse online datasets and reveal skills gaps. The purpose of this study is then to show how the skills gaps revealed by the integrated datasets can be used to achieve better labour market alignment, keep educational…
Descriptors: Taxonomy, Artificial Intelligence, Data Collection, Data Analysis
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hu, Xiangen, Ed.; Barnes, Tiffany, Ed.; Hershkovitz, Arnon, Ed.; Paquette, Luc, Ed. – International Educational Data Mining Society, 2017
The 10th International Conference on Educational Data Mining (EDM 2017) is held under the auspices of the International Educational Data Mining Society at the Optics Velley Kingdom Plaza Hotel, Wuhan, Hubei Province, in China. This years conference features two invited talks by: Dr. Jie Tang, Associate Professor with the Department of Computer…
Descriptors: Data Analysis, Data Collection, Graphs, Data Use