Publication Date
| In 2026 | 0 |
| Since 2025 | 0 |
| Since 2022 (last 5 years) | 0 |
| Since 2017 (last 10 years) | 1 |
| Since 2007 (last 20 years) | 1 |
Descriptor
| College Admission | 1 |
| College Applicants | 1 |
| Computer Software | 1 |
| Data Analysis | 1 |
| Enrollment Management | 1 |
| Enrollment Trends | 1 |
| Models | 1 |
| Prediction | 1 |
| Probability | 1 |
| Programming Languages | 1 |
| Strategic Planning | 1 |
| More ▼ | |
Source
| Strategic Enrollment… | 1 |
Publication Type
| Journal Articles | 1 |
| Reports - Research | 1 |
Education Level
| Higher Education | 1 |
| Postsecondary Education | 1 |
Audience
Location
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
Soltys, Michael; Dang, Hung D.; Reyes Reilly, Ginger; Soltys, Katharine – Strategic Enrollment Management Quarterly, 2021
A Machine Learning framework for predicting enrollment is proposed. The framework consists of Amazon Web Services SageMaker together with standard Python tools for data analytics, including Pandas, NumPy, MatPlotLib, and ScikitLearn. The tools are deployed with Jupyter Notebooks running on AWS SageMaker. Based on three years of enrollment history,…
Descriptors: Enrollment Management, Strategic Planning, Prediction, Computer Software

Peer reviewed
Direct link
