Publication Date
In 2025 | 0 |
Since 2024 | 2 |
Since 2021 (last 5 years) | 4 |
Since 2016 (last 10 years) | 7 |
Since 2006 (last 20 years) | 13 |
Descriptor
Data Analysis | 13 |
Data Collection | 13 |
Models | 6 |
Prediction | 4 |
Educational Research | 3 |
Intelligent Tutoring Systems | 3 |
Knowledge Level | 3 |
Online Courses | 3 |
Statistical Analysis | 3 |
Student Behavior | 3 |
Academic Achievement | 2 |
More ▼ |
Source
Journal of Educational Data… | 13 |
Author
Andersen, Nico | 1 |
Areti Manataki | 1 |
Atkinson, Robert K. | 1 |
Azarnoush, Bahareh | 1 |
Baker, Ryan S. J. D. | 1 |
Baraniuk, Richard | 1 |
Behnam Rohani | 1 |
Bekki, Jennifer M. | 1 |
Bengs, Daniel | 1 |
Berens, Johannes | 1 |
Bernstein, Bianca L. | 1 |
More ▼ |
Publication Type
Journal Articles | 13 |
Reports - Research | 12 |
Information Analyses | 1 |
Reports - Descriptive | 1 |
Education Level
Secondary Education | 5 |
Higher Education | 4 |
Postsecondary Education | 4 |
Elementary Education | 2 |
High Schools | 2 |
Junior High Schools | 2 |
Middle Schools | 2 |
Grade 10 | 1 |
Grade 6 | 1 |
Grade 7 | 1 |
Grade 8 | 1 |
More ▼ |
Audience
Laws, Policies, & Programs
Assessments and Surveys
ACT Assessment | 1 |
National Assessment of… | 1 |
What Works Clearinghouse Rating
Yikai Lu; Lingbo Tong; Ying Cheng – Journal of Educational Data Mining, 2024
Knowledge tracing aims to model and predict students' knowledge states during learning activities. Traditional methods like Bayesian Knowledge Tracing (BKT) and logistic regression have limitations in granularity and performance, while deep knowledge tracing (DKT) models often suffer from lacking transparency. This paper proposes a…
Descriptors: Models, Intelligent Tutoring Systems, Prediction, Knowledge Level
Narjes Rohani; Behnam Rohani; Areti Manataki – Journal of Educational Data Mining, 2024
The prediction of student performance and the analysis of students' learning behaviour play an important role in enhancing online courses. By analysing a massive amount of clickstream data that captures student behaviour, educators can gain valuable insights into the factors that influence students' academic outcomes and identify areas of…
Descriptors: Mathematics Education, Models, Prediction, Knowledge Level
Pardos, Zachary A.; Dadu, Anant – Journal of Educational Data Mining, 2018
We introduce a model which combines principles from psychometric and connectionist paradigms to allow direct Q-matrix refinement via backpropagation. We call this model dAFM, based on augmentation of the original Additive Factors Model (AFM), whose calculations and constraints we show can be exactly replicated within the framework of neural…
Descriptors: Q Methodology, Psychometrics, Models, Knowledge Level
Zehner, Fabian; Eichmann, Beate; Deribo, Tobias; Harrison, Scott; Bengs, Daniel; Andersen, Nico; Hahnel, Carolin – Journal of Educational Data Mining, 2021
The NAEP EDM Competition required participants to predict efficient test-taking behavior based on log data. This paper describes our top-down approach for engineering features by means of psychometric modeling, aiming at machine learning for the predictive classification task. For feature engineering, we employed, among others, the Log-Normal…
Descriptors: National Competency Tests, Engineering Education, Data Collection, Data Analysis
Berens, Johannes; Schneider, Kerstin; Gortz, Simon; Oster, Simon; Burghoff, Julian – Journal of Educational Data Mining, 2019
To successfully reduce student attrition, it is imperative to understand what the underlying determinants of attrition are and which students are at risk of dropping out. We develop an early detection system (EDS) using administrative student data from a state and private university to predict student dropout as a basis for a targeted…
Descriptors: Risk Management, At Risk Students, Dropout Prevention, College Students
Edwards, John; Hart, Kaden; Shrestha, Raj – Journal of Educational Data Mining, 2023
Analysis of programming process data has become popular in computing education research and educational data mining in the last decade. This type of data is quantitative, often of high temporal resolution, and it can be collected non-intrusively while the student is in a natural setting. Many levels of granularity can be obtained, such as…
Descriptors: Data Analysis, Computer Science Education, Learning Analytics, Research Methodology
Schneider, Bertrand; Blikstein, Paulo – Journal of Educational Data Mining, 2015
In this paper, we describe multimodal learning analytics (MMLA) techniques to analyze data collected around an interactive learning environment. In a previous study (Schneider & Blikstein, submitted), we designed and evaluated a Tangible User Interface (TUI) where dyads of students were asked to learn about the human hearing system by…
Descriptors: Educational Research, Data Collection, Data Analysis, Educational Environment
Liu, Ran; Koedinger, Kenneth R. – Journal of Educational Data Mining, 2017
As the use of educational technology becomes more ubiquitous, an enormous amount of learning process data is being produced. Educational data mining seeks to analyze and model these data, with the ultimate goal of improving learning outcomes. The most firmly grounded and rigorous evaluation of an educational data mining discovery is whether it…
Descriptors: Educational Technology, Technology Uses in Education, Data Collection, Data Analysis
Werner, Linda; McDowell, Charlie; Denner, Jill – Journal of Educational Data Mining, 2013
Educational data mining can miss or misidentify key findings about student learning without a transparent process of analyzing the data. This paper describes the first steps in the process of using low-level logging data to understand how middle school students used Alice, an initial programming environment. We describe the steps that were…
Descriptors: Electronic Learning, Learning Processes, Educational Research, Data Collection
Azarnoush, Bahareh; Bekki, Jennifer M.; Runger, George C.; Bernstein, Bianca L.; Atkinson, Robert K. – Journal of Educational Data Mining, 2013
Effectively grouping learners in an online environment is a highly useful task. However, datasets used in this task often have large numbers of attributes of disparate types and different scales, which traditional clustering approaches cannot handle effectively. Here, a unique dissimilarity measure based on the random forest, which handles the…
Descriptors: Online Courses, Females, Doctoral Programs, Graduate Students
Waters, Andrew; Studer, Christoph; Baraniuk, Richard – Journal of Educational Data Mining, 2014
Identifying collaboration between learners in a course is an important challenge in education for two reasons: First, depending on the courses rules, collaboration can be considered a form of cheating. Second, it helps one to more accurately evaluate each learners competence. While such collaboration identification is already challenging in…
Descriptors: Cooperation, Large Group Instruction, Online Courses, Probability
Kerr, Deirdre; Chung, Gregory K. W. K. – Journal of Educational Data Mining, 2012
The assessment cycle of "evidence-centered design" (ECD) provides a framework for treating an educational video game or simulation as an assessment. One of the main steps in the assessment cycle of ECD is the identification of the key features of student performance. While this process is relatively simple for multiple choice tests, when…
Descriptors: Evidence Based Practice, Design, Academic Achievement, Educational Games
Baker, Ryan S. J. D.; Yacef, Kalina – Journal of Educational Data Mining, 2009
We review the history and current trends in the field of Educational Data Mining (EDM). We consider the methodological profile of research in the early years of EDM, compared to in 2008 and 2009, and discuss trends and shifts in the research conducted by this community. In particular, we discuss the increased emphasis on prediction, the emergence…
Descriptors: Trend Analysis, Educational History, Educational Research, Research Methodology