NotesFAQContact Us
Collection
Advanced
Search Tips
Source
International Educational…22
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 22 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hutt, Stephen; Das, Sanchari; Baker, Ryan S. – International Educational Data Mining Society, 2023
The General Data Protection Regulation (GDPR) in the European Union contains directions on how user data may be collected, stored, and when it must be deleted. As similar legislation is developed around the globe, there is the potential for repercussions across multiple fields of research, including educational data mining (EDM). Over the past two…
Descriptors: Data Analysis, Decision Making, Data Collection, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Marwan, Samiha; Shi, Yang; Menezes, Ian; Chi, Min; Barnes, Tiffany; Price, Thomas W. – International Educational Data Mining Society, 2021
Feedback on how students progress through completing subgoals can improve students' learning and motivation in programming. Detecting subgoal completion is a challenging task, and most learning environments do so either with "expert-authored" models or with "data-driven" models. Both models have advantages that are…
Descriptors: Expertise, Models, Feedback (Response), Identification
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Mitrovic, Antonija, Ed.; Bosch, Nigel, Ed. – International Educational Data Mining Society, 2022
For this 15th iteration of the International Conference on Educational Data Mining (EDM 2022), the conference was held in Durham, England, with an online hybrid format for virtual participation as well. EDM is organized under the auspices of the International Educational Data Mining Society. The theme of this year's conference is Inclusion,…
Descriptors: Information Retrieval, Data Analysis, Feedback (Response), Inclusion
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Clavié, Benjamin; Gal, Kobi – International Educational Data Mining Society, 2020
We introduce DeepPerfEmb, or DPE, a new deep-learning model that captures dense representations of students' online behaviour and meta-data about students and educational content. The model uses these representations to predict student performance. We evaluate DPE on standard datasets from the literature, showing superior performance to the…
Descriptors: Student Behavior, Electronic Learning, Metadata, Prediction
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Motz, Benjamin; Busey, Thomas; Rickert, Martin; Landy, David – International Educational Data Mining Society, 2018
Analyses of student data in post-secondary education should be sensitive to the fact that there are many different topics of study. These different areas will interest different kinds of students, and entail different experiences and learning activities. However, it can be challenging to identify the distinct academic themes that students might…
Descriptors: Data Collection, Data Analysis, Enrollment, Higher Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zhu, Jile; Li, Xiang; Wang, Zhuo; Zhang, Ming – International Educational Data Mining Society, 2017
Although millions of students have access to varieties of learning resources on Massive Open Online Courses (MOOCs), they are usually limited to receiving rapid feedback. Providing guidance for students, which enhances the interaction with students, is a promising way to improve learning experience. In this paper, we consider to show students the…
Descriptors: Large Group Instruction, Online Courses, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zheng, Longwei; Shi, Rui; Wu, Bingcong; Gu, Xiaoqing; Feng, Yuanyuan – International Educational Data Mining Society, 2017
The adoption of educational technologies such as e-textbook has offered a new opportunity to gain insight into teachers' usage of ICT (Information and Communication Technologies). In the e-textbook platform, customized digital products and the learning activities organized in digital environment require teachers to make greater efforts in planning…
Descriptors: Educational Technology, Technology Uses in Education, Visualization, Data Collection
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Coleman, Chad; Baker, Ryan S.; Stephenson, Shonte – International Educational Data Mining Society, 2019
Determining which students are at risk of poorer outcomes -- such as dropping out, failing classes, or decreasing standardized examination scores -- has become an important area of research and practice in both K-12 and higher education. The detectors produced from this type of predictive modeling research are increasingly used in early warning…
Descriptors: Prediction, At Risk Students, Predictor Variables, Elementary Secondary Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Atapattu, Thushari; Falkner, Katrina; Tarmazdi, Hamid – International Educational Data Mining Society, 2016
With a goal of better understanding the online discourse within the Massive Open Online Course (MOOC) context, this paper presents an open source visualisation dashboard developed to identify and classify emergent discussion topics (or themes). As an extension to the authors' previous work in identifying key topics from MOOC discussion contents,…
Descriptors: Online Courses, Large Group Instruction, Educational Technology, Technology Uses in Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Zeng, Ziheng; Chaturvedi, Snigdha; Bhat, Suma – International Educational Data Mining Society, 2017
Characterizing the nature of students' affective and emotional states and detecting them is of fundamental importance in online course platforms. In this paper, we study this problem by using discussion forum posts derived from large open online courses. We find that posts identified as encoding confusion are actually manifestations of different…
Descriptors: Online Courses, Large Group Instruction, Educational Technology, Technology Uses in Education
Beheshti, Behzad; Desmarais, Michel C. – International Educational Data Mining Society, 2015
This study investigates the issue of the goodness of fit of different skills assessment models using both synthetic and real data. Synthetic data is generated from the different skills assessment models. The results show wide differences of performances between the skills assessment models over synthetic data sets. The set of relative performances…
Descriptors: Goodness of Fit, Student Evaluation, Skills, Models
Peer reviewed Peer reviewed
PDF on ERIC Download full text
McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2016
Effective mining of data from online submission systems offers the potential to improve educational outcomes by identifying student habits and behaviours and their relationship with levels of achievement. In particular, it may assist in identifying students at risk of performing poorly, allowing for early intervention. In this paper we investigate…
Descriptors: Data Collection, Student Behavior, Academic Achievement, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Crossley, Scott; Barnes, Tiffany; Lynch, Collin; McNamara, Danielle S. – International Educational Data Mining Society, 2017
This study takes a novel approach toward understanding success in a math course by examining the linguistic features and affect of students' language production within a blended (with both on-line and traditional face to face instruction) undergraduate course (n=158) on discrete mathematics. Three linear effects models were compared: (a) a…
Descriptors: Success, Mathematics Instruction, Language Usage, Blended Learning
Strecht, Pedro; Cruz, Luís; Soares, Carlos; Mendes-Moreira, João; Abreu, Rui – International Educational Data Mining Society, 2015
Predicting the success or failure of a student in a course or program is a problem that has recently been addressed using data mining techniques. In this paper we evaluate some of the most popular classification and regression algorithms on this problem. We address two problems: prediction of approval/failure and prediction of grade. The former is…
Descriptors: Comparative Analysis, Classification, Regression (Statistics), Mathematics
Rihák, Jirí – International Educational Data Mining Society, 2015
In this work we introduce the system for adaptive practice of foundations of mathematics. Adaptivity of the system is primarily provided by selection of suitable tasks, which uses information from a domain model and a student model. The domain model does not use prerequisites but works with splitting skills to more concrete sub-skills. The student…
Descriptors: Mathematics Achievement, Mathematics Skills, Models, Reaction Time
Previous Page | Next Page »
Pages: 1  |  2