NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 10 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Cassandra Artman Collier – Journal of Information Systems Education, 2024
When we imagine the work of a data analyst, we often picture meaningful data analysis and beautiful data visualizations. Although that is an exciting part of the job, data analysts actually spend the majority of their time acquiring, cleaning, and preparing data for analysis. This teaching case guides students through some of the most common data…
Descriptors: Data Analysis, Visual Aids, Web Sites, Data Processing
Peer reviewed Peer reviewed
Direct linkDirect link
Byran J. Smucker; Nathaniel T. Stevens; Jacqueline Asscher; Peter Goos – Journal of Statistics and Data Science Education, 2023
The design and analysis of experiments (DOE) has historically been an important part of an education in statistics, and with the increasing complexity of modern production processes and the advent of large-scale online experiments, it continues to be highly relevant. In this article, we provide an extensive review of the literature on DOE…
Descriptors: Statistics Education, Data Science, Experiments, Teaching Methods
Peer reviewed Peer reviewed
Direct linkDirect link
Ihrmark, Daniel; Tyrkkö, Jukka – Education for Information, 2023
The combination of the quantitative turn in linguistics and the emergence of text analytics has created a demand for new methodological skills among linguists and data scientists. This paper introduces KNIME as a low-code programming platform for linguists interested in learning text analytic methods, while highlighting the considerations…
Descriptors: Linguistics, Data Science, Programming, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Allison S. Theobold; Megan H. Wickstrom; Stacey A. Hancock – Journal of Statistics and Data Science Education, 2024
Despite the elevated importance of Data Science in Statistics, there exists limited research investigating how students learn the computing concepts and skills necessary for carrying out data science tasks. Computer Science educators have investigated how students debug their own code and how students reason through foreign code. While these…
Descriptors: Computer Science Education, Coding, Data Science, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Bay Arinze – Journal of Statistics and Data Science Education, 2023
Data Analytics has grown dramatically in importance and in the level of business deployments in recent years. It is used across most functional areas and applications, some of the latter including market campaigns, detecting fraud, determining credit, identifying assembly line defects, health services and many others. Indeed, the realm of…
Descriptors: Data Analysis, Elections, Simulation, Statistics Education
Peer reviewed Peer reviewed
Direct linkDirect link
Alison Wallum; Zetai Liu; Joy Lee; Subhojyoti Chatterjee; Lawrence Tauzin; Christopher D. Barr; Amberle Browne; Christy F. Landes; Amy L. Nicely; Martin Gruebele – Journal of Chemical Education, 2023
As data science and instrumentation become key practices in common careers ranging from medicine to agriscience, chemistry as a core introductory course must introduce such topics to students early and at an accessible level. Advanced data acquisition and data science generally require expensive precision instrumentation and massive computation,…
Descriptors: Undergraduate Study, Data Science, Science Laboratories, Laboratory Equipment
Peer reviewed Peer reviewed
Direct linkDirect link
Alderson, David L. – INFORMS Transactions on Education, 2022
This article describes the motivation and design for introductory coursework in computation aimed at midcareer professionals who desire to work in data science and analytics but who have little or no background in programming. In particular, we describe how we use modern interactive computing platforms to accelerate the learning of our students…
Descriptors: Curriculum Design, Introductory Courses, Computation, Data Science
Peer reviewed Peer reviewed
Direct linkDirect link
Amaliah, Dewi; Cook, Dianne; Tanaka, Emi; Hyde, Kate; Tierney, Nicholas – Journal of Statistics and Data Science Education, 2022
Textbook data is essential for teaching statistics and data science methods because it is clean, allowing the instructor to focus on methodology. Ideally textbook datasets are refreshed regularly, especially when they are subsets taken from an ongoing data collection. It is also important to use contemporary data for teaching, to imbue the sense…
Descriptors: Statistics Education, Data Science, Textbooks, Data Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Towse, John; Davies, Rob; Ball, Ellie; James, Rebecca; Gooding, Ben; Ivory, Matthew – Journal of Statistics and Data Science Education, 2022
We advocate for greater emphasis in training students about data management, within the context of supporting experience in reproducible workflows. We introduce the "L"ancaster "U"niversity "ST"atistics "RE"sources (LUSTRE) package, used to manage student research project data in psychology and build…
Descriptors: Data Analysis, Information Management, Open Source Technology, Data Science
Peer reviewed Peer reviewed
Direct linkDirect link
Dogucu, Mine; Çetinkaya-Rundel, Mine – Journal of Statistics and Data Science Education, 2022
It is recommended that teacher-scholars of data science adopt reproducible workflows in their research as scholars and teach reproducible workflows to their students. In this article, we propose a third dimension to reproducibility practices and recommend that regardless of whether they teach reproducibility in their courses or not, data science…
Descriptors: Statistics Education, Data Science, Teaching Methods, Instructional Materials