NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 8 results Save | Export
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Hutt, Stephen; Das, Sanchari; Baker, Ryan S. – International Educational Data Mining Society, 2023
The General Data Protection Regulation (GDPR) in the European Union contains directions on how user data may be collected, stored, and when it must be deleted. As similar legislation is developed around the globe, there is the potential for repercussions across multiple fields of research, including educational data mining (EDM). Over the past two…
Descriptors: Data Analysis, Decision Making, Data Collection, Foreign Countries
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Švábenský, Valdemar; Baker, Ryan S.; Zambrano, Andrés; Zou, Yishan; Slater, Stefan – International Educational Data Mining Society, 2023
Students who take an online course, such as a MOOC, use the course's discussion forum to ask questions or reach out to instructors when encountering an issue. However, reading and responding to students' questions is difficult to scale because of the time needed to consider each message. As a result, critical issues may be left unresolved, and…
Descriptors: Generalization, Computer Mediated Communication, MOOCs, State Universities
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Coleman, Chad; Baker, Ryan S.; Stephenson, Shonte – International Educational Data Mining Society, 2019
Determining which students are at risk of poorer outcomes -- such as dropping out, failing classes, or decreasing standardized examination scores -- has become an important area of research and practice in both K-12 and higher education. The detectors produced from this type of predictive modeling research are increasingly used in early warning…
Descriptors: Prediction, At Risk Students, Predictor Variables, Elementary Secondary Education
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Slater, Stefan; Baker, Ryan S.; Wang, Yeyu – International Educational Data Mining Society, 2020
Feature engineering, the construction of contextual and relevant features from system log data, is a crucial component of developing robust and interpretable models in educational data mining contexts. The practice of feature engineering depends on domain experts and system developers working in tandem in order to creatively identify actions and…
Descriptors: Data Analysis, Engineering, Classification, Models
Peer reviewed Peer reviewed
Direct linkDirect link
Slater, Stefan; Joksimovic, Srecko; Kovanovic, Vitomir; Baker, Ryan S.; Gasevic, Dragan – Journal of Educational and Behavioral Statistics, 2017
In recent years, a wide array of tools have emerged for the purposes of conducting educational data mining (EDM) and/or learning analytics (LA) research. In this article, we hope to highlight some of the most widely used, most accessible, and most powerful tools available for the researcher interested in conducting EDM/LA research. We will…
Descriptors: Data Analysis, Data Processing, Computer Uses in Education, Educational Research
Peer reviewed Peer reviewed
Direct linkDirect link
San Pedro, Maria Ofelia Z.; Baker, Ryan S.; Heffernan, Neil T. – Technology, Knowledge and Learning, 2017
Middle school is an important phase in the academic trajectory, which plays a major role in the path to successful post-secondary outcomes such as going to college. Despite this, research on factors leading to college-going choices do not yet utilize the extensive fine-grained data now becoming available on middle school learning and engagement.…
Descriptors: Educational Technology, Technology Uses in Education, Middle Schools, Postsecondary Education
Peer reviewed Peer reviewed
Direct linkDirect link
Berland, Matthew; Baker, Ryan S.; Blikstein, Paulo – Technology, Knowledge and Learning, 2014
Constructionism can be a powerful framework for teaching complex content to novices. At the core of constructionism is the suggestion that by enabling learners to build creative artifacts that require complex content to function, those learners will have opportunities to learn this content in contextualized, personally meaningful ways. In this…
Descriptors: Educational Research, Statistical Analysis, Cooperation, Researchers
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Kovanovic, Vitomir; Gaševic, Dragan; Dawson, Shane; Joksimovic, Srecko; Baker, Ryan S.; Hatala, Marek – Journal of Learning Analytics, 2015
With widespread adoption of Learning Management Systems (LMS) and other learning technology, large amounts of data--commonly known as trace data--are readily accessible to researchers. Trace data has been extensively used to calculate time that students spend on different learning activities--typically referred to as time-on-task. These measures…
Descriptors: Time on Task, Computation, Validity, Data Analysis