Publication Date
| In 2026 | 0 |
| Since 2025 | 10 |
| Since 2022 (last 5 years) | 98 |
| Since 2017 (last 10 years) | 1165 |
| Since 2007 (last 20 years) | 4664 |
Descriptor
| Correlation | 5303 |
| Regression (Statistics) | 4130 |
| Foreign Countries | 1856 |
| Statistical Analysis | 1563 |
| Predictor Variables | 1157 |
| Questionnaires | 1039 |
| Academic Achievement | 766 |
| Gender Differences | 750 |
| Scores | 717 |
| Student Attitudes | 649 |
| Measures (Individuals) | 612 |
| More ▼ | |
Source
Author
Publication Type
Education Level
Audience
| Researchers | 41 |
| Teachers | 22 |
| Practitioners | 17 |
| Students | 11 |
| Policymakers | 8 |
| Administrators | 5 |
| Counselors | 1 |
| Media Staff | 1 |
Location
| Turkey | 241 |
| Australia | 120 |
| California | 112 |
| Canada | 108 |
| Germany | 89 |
| China | 87 |
| United Kingdom | 85 |
| Texas | 83 |
| Netherlands | 77 |
| United States | 71 |
| Taiwan | 66 |
| More ▼ | |
Laws, Policies, & Programs
Assessments and Surveys
What Works Clearinghouse Rating
| Meets WWC Standards without Reservations | 2 |
| Meets WWC Standards with or without Reservations | 4 |
| Does not meet standards | 4 |
Timo Gnambs; Ulrich Schroeders – Research Synthesis Methods, 2024
Meta-analyses of treatment effects in randomized control trials are often faced with the problem of missing information required to calculate effect sizes and their sampling variances. Particularly, correlations between pre- and posttest scores are frequently not available. As an ad-hoc solution, researchers impute a constant value for the missing…
Descriptors: Accuracy, Meta Analysis, Randomized Controlled Trials, Effect Size
Fangxing Bai; Ben Kelcey – Society for Research on Educational Effectiveness, 2024
Purpose and Background: Despite the flexibility of multilevel structural equation modeling (MLSEM), a practical limitation many researchers encounter is how to effectively estimate model parameters with typical sample sizes when there are many levels of (potentially disparate) nesting. We develop a method-of-moment corrected maximum likelihood…
Descriptors: Maximum Likelihood Statistics, Structural Equation Models, Sample Size, Faculty Development
Ram B. Basnet; David J. Lemay; Paul Bazelais – Knowledge Management & E-Learning, 2024
Academic and practitioner interest in data science has increased considerably. Yet scholarly understanding of what motivates students to learn data science is still limited. Drawing on the theory of planned behavior, we propose a research model to examine the determinants of behavioral intentions to learn data science. In the proposed research…
Descriptors: Student Attitudes, Intention, Data Science, Statistics Education
Oscar Blessed Deho; Lin Liu; Jiuyong Li; Jixue Liu; Chen Zhan; Srecko Joksimovic – IEEE Transactions on Learning Technologies, 2024
Learning analytics (LA), like much of machine learning, assumes the training and test datasets come from the same distribution. Therefore, LA models built on past observations are (implicitly) expected to work well for future observations. However, this assumption does not always hold in practice because the dataset may drift. Recently,…
Descriptors: Learning Analytics, Ethics, Algorithms, Models
Domínguez Islas, Clara; Rice, Kenneth M. – Research Synthesis Methods, 2022
Bayesian methods seem a natural choice for combining sources of evidence in meta-analyses. However, in practice, their sensitivity to the choice of prior distribution is much less attractive, particularly for parameters describing heterogeneity. A recent non-Bayesian approach to fixed-effects meta-analysis provides novel ways to think about…
Descriptors: Bayesian Statistics, Evidence, Meta Analysis, Statistical Inference
T. D. Stanley; Hristos Doucouliagos; Tomas Havranek – Research Synthesis Methods, 2024
We demonstrate that all meta-analyses of partial correlations are biased, and yet hundreds of meta-analyses of partial correlation coefficients (PCCs) are conducted each year widely across economics, business, education, psychology, and medical research. To address these biases, we offer a new weighted average, UWLS[subscript +3]. UWLS[subscript…
Descriptors: Meta Analysis, Correlation, Bias, Sample Size
Changiz Mohiyeddini – Anatomical Sciences Education, 2025
This article presents a step-by-step guide to using R and SPSS to bootstrap exam questions. Bootstrapping, a versatile nonparametric analytical technique, can help to improve the psychometric qualities of exam questions in the process of quality assurance. Bootstrapping is particularly useful in disciplines such as medical education, where student…
Descriptors: Test Items, Sampling, Statistical Inference, Nonparametric Statistics
Sarkar, Jyotirmoy; Rashid, Mamunur – Educational Research Quarterly, 2021
The Pearson correlation coefficient can be recovered from the two least squares regression lines y[with circumflex] = b[subscript 0] + b[subscript 1]x and x[with circumflex] = a[subscript 0] + a[subscript 1]y without any data. This can be done both algebraically and geometrically. This can be done without data even when the scales of the variables…
Descriptors: Correlation, Regression (Statistics), Least Squares Statistics, Information Utilization
Bloome, Deirdre; Schrage, Daniel – Sociological Methods & Research, 2021
Causal analyses typically focus on average treatment effects. Yet for substantive research on topics like inequality, interest extends to treatments' distributional consequences. When individuals differ in their responses to treatment, three types of inequality may result. Treatment may shape inequalities between subgroups defined by pretreatment…
Descriptors: Regression (Statistics), Outcomes of Treatment, Statistical Analysis, Correlation
Kajal Mahawar; Punam Rattan – Education and Information Technologies, 2025
Higher education institutions have consistently strived to provide students with top-notch education. To achieve better outcomes, machine learning (ML) algorithms greatly simplify the prediction process. ML can be utilized by academicians to obtain insight into student data and mine data for forecasting the performance. In this paper, the authors…
Descriptors: Electronic Learning, Artificial Intelligence, Academic Achievement, Prediction
Wenyi Li; Qian Zhang – Society for Research on Educational Effectiveness, 2025
This study compared Stepwise Logistic Regression (Stepwise-LR) and three machine learning (ML) methods--Classification and Regression Trees (CART), Random Forest (RF), and Generalized Boosted Modeling (GBM) for estimating propensity scores (PS) applied in causal inference. A simulation study was conducted considering factors of the sample size,…
Descriptors: Regression (Statistics), Artificial Intelligence, Statistical Analysis, Computation
Qi, Hongchao; Rizopoulos, Dimitris; Rosmalen, Joost – Research Synthesis Methods, 2022
The meta-analytic-predictive (MAP) approach is a Bayesian meta-analytic method to synthesize and incorporate information from historical controls in the analysis of a new trial. Classically, only a single parameter, typically the intercept or rate, is assumed to vary across studies, which may not be realistic in more complex models. Analysis of…
Descriptors: Meta Analysis, Prediction, Correlation, Bayesian Statistics
Kane, Michael T. – ETS Research Report Series, 2021
Ordinary least squares (OLS) regression provides optimal linear predictions of a dependent variable, y, given an independent variable, x, but OLS regressions are not symmetric or reversible. In order to get optimal linear predictions of x given y, a separate OLS regression in that direction would be needed. This report provides a least squares…
Descriptors: Least Squares Statistics, Regression (Statistics), Prediction, Geometric Concepts
Petersen, Ashley – Journal of Statistics and Data Science Education, 2022
While correlated data methods (like random effect models and generalized estimating equations) are commonly applied in practice, students may struggle with understanding the reasons that standard regression techniques fail if applied to correlated outcomes. To this end, this article presents an in-class activity using results from Monte Carlo…
Descriptors: Intuition, Skill Development, Correlation, Graduate Students
Evans, Ciaran – Journal of Statistics and Data Science Education, 2022
This article demonstrates how data from a biology paper, which analyzes the relationship between mass and metabolic rate for two species of marine bryozoan, can be used to teach a variety of regression topics to both introductory and advanced students. A thorough analysis requires intelligent data wrangling, variable transformations, and…
Descriptors: Regression (Statistics), Metabolism, Animals, Marine Biology

Peer reviewed
Direct link
