ERIC Number: ED668337
Record Type: Non-Journal
Publication Date: 2020
Pages: 63
Abstractor: As Provided
ISBN: 979-8-5169-9150-9
ISSN: N/A
EISSN: N/A
Available Date: 0000-00-00
Factor Retention Strategies with Ordinal Variables in Exploratory Factor Analysis: A Simulation
Marcus A. Fagan
ProQuest LLC, Ph.D. Dissertation, University of North Texas
Previous research has individually assessed parallel analysis and minimum average partial for factor retention in exploratory factor analysis using ordinal variables. The current study is a comprehensive simulation study including the manipulation of eight conditions (type of correlation matrix, sample size, number of variables per factor, number of factors, factor correlation, skewness, factor loadings, and number of response categories), and three types of retention methods (minimum average partial, parallel analysis, and empirical Kaiser criterion) resulting in a 2 x 2 x 2 x 2 x 2 x 3 x 3 x 4 x 5 design that totals to 5,760 condition combinations tested over 1,000 replications each. Results show that each retention method performed worse when utilizing polychoric correlation matrices. Moreover, minimum average partials are quite sensitive to factor loadings and overall perform poorly compared to parallel analysis and empirical Kaiser criterion. Empirical Kaiser criterion performed almost identical to parallel analysis in normally distributed data; however, performed much worse under highly skewed conditions. Based on these findings, it is recommended to use parallel analysis utilizing principal components analysis with a Pearson correlation matrix to determine the number of factors to retain when dealing with ordinal data. [The dissertation citations contained here are published with the permission of ProQuest LLC. Further reproduction is prohibited without permission. Copies of dissertations may be obtained by Telephone (800) 1-800-521-0600. Web page: http://www.proquest.com.bibliotheek.ehb.be/en-US/products/dissertations/individuals.shtml.]
Descriptors: Retention (Psychology), Factor Analysis, Correlation, Matrices, Sample Size, Mathematical Concepts, Equations (Mathematics)
ProQuest LLC. 789 East Eisenhower Parkway, P.O. Box 1346, Ann Arbor, MI 48106. Tel: 800-521-0600; Web site: http://www.proquest.com.bibliotheek.ehb.be/en-US/products/dissertations/individuals.shtml
Publication Type: Dissertations/Theses - Doctoral Dissertations
Education Level: N/A
Audience: N/A
Language: English
Sponsor: N/A
Authoring Institution: N/A
Grant or Contract Numbers: N/A
Author Affiliations: N/A

Direct link
