NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 9 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Julia-Kim Walther; Martin Hecht; Steffen Zitzmann – Structural Equation Modeling: A Multidisciplinary Journal, 2025
Small sample sizes pose a severe threat to convergence and accuracy of between-group level parameter estimates in multilevel structural equation modeling (SEM). However, in certain situations, such as pilot studies or when populations are inherently small, increasing samples sizes is not feasible. As a remedy, we propose a two-stage regularized…
Descriptors: Sample Size, Hierarchical Linear Modeling, Structural Equation Models, Matrices
Peer reviewed Peer reviewed
Direct linkDirect link
Hedges, Larry V. – Research Synthesis Methods, 2016
Structural equation models play an important role in the social sciences. Consequently, there is an increasing use of meta-analytic methods to combine evidence from studies that estimate the parameters of structural equation models. Two approaches are used to combine evidence from structural equation models: A direct approach that combines…
Descriptors: Meta Analysis, Structural Equation Models, Social Science Research, Research Methodology
Peer reviewed Peer reviewed
Direct linkDirect link
Oort, Frans J.; Jak, Suzanne – Research Synthesis Methods, 2016
Meta-analytic structural equation modeling (MASEM) involves fitting models to a common population correlation matrix that is estimated on the basis of correlation coefficients that are reported by a number of independent studies. MASEM typically consist of two stages. The method that has been found to perform best in terms of statistical…
Descriptors: Maximum Likelihood Statistics, Meta Analysis, Structural Equation Models, Correlation
Peer reviewed Peer reviewed
Direct linkDirect link
Beretvas, S. Natasha; Furlow, Carolyn F. – Structural Equation Modeling: A Multidisciplinary Journal, 2006
Meta-analytic structural equation modeling (MA-SEM) is increasingly being used to assess model-fit for variables' interrelations synthesized across studies. MA-SEM researchers have analyzed synthesized correlation matrices using structural equation modeling (SEM) estimation that is designed for covariance matrices. This can produce incorrect…
Descriptors: Structural Equation Models, Matrices, Statistical Analysis, Synthesis
Peer reviewed Peer reviewed
McDonald, Roderick P.; Hartmann, Wolfgang M. – Multivariate Behavioral Research, 1992
An algorithm for obtaining initial values for the minimization process in covariance structure analysis is developed that is more generally applicable for computing parameters connected to latent variables than the currently existing ones. The algorithm is formulated in terms of the RAM model but can be extended. (SLD)
Descriptors: Algorithms, Correlation, Equations (Mathematics), Estimation (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Hayashi, Kentaro; Arav, Marina – Educational and Psychological Measurement, 2006
In traditional factor analysis, the variance-covariance matrix or the correlation matrix has often been a form of inputting data. In contrast, in Bayesian factor analysis, the entire data set is typically required to compute the posterior estimates, such as Bayes factor loadings and Bayes unique variances. We propose a simple method for computing…
Descriptors: Bayesian Statistics, Factor Analysis, Correlation, Matrices
Kaplan, David – 1993
The impact of the use of data arising from balanced incomplete block (BIB) spiralled designs on the chi-square goodness-of-fit test in factor analysis is considered. Data from BIB designs posses a unique pattern of missing data that can be characterized as missing completely at random (MCAR). Standard approaches to factor analyzing such data rest…
Descriptors: Chi Square, Computer Simulation, Correlation, Factor Analysis
Peer reviewed Peer reviewed
Direct linkDirect link
Furlow, Carolyn F.; Beretvas, S. Natasha – Psychological Methods, 2005
Three methods of synthesizing correlations for meta-analytic structural equation modeling (SEM) under different degrees and mechanisms of missingness were compared for the estimation of correlation and SEM parameters and goodness-of-fit indices by using Monte Carlo simulation techniques. A revised generalized least squares (GLS) method for…
Descriptors: Rejection (Psychology), Monte Carlo Methods, Least Squares Statistics, Correlation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Bechger, Timo M.; Maris, Gunter – Psicologica: International Journal of Methodology and Experimental Psychology, 2004
This paper is about the structural equation modelling of quantitative measures that are obtained from a multiple facet design. A facet is simply a set consisting of a finite number of elements. It is assumed that measures are obtained by combining each element of each facet. Methods and traits are two such facets, and a multitrait-multimethod…
Descriptors: Structural Equation Models, Multitrait Multimethod Techniques, Schematic Studies, Correlation