Publication Date
In 2025 | 0 |
Since 2024 | 0 |
Since 2021 (last 5 years) | 1 |
Since 2016 (last 10 years) | 8 |
Since 2006 (last 20 years) | 27 |
Descriptor
Computation | 29 |
Correlation | 29 |
Maximum Likelihood Statistics | 29 |
Models | 13 |
Comparative Analysis | 11 |
Monte Carlo Methods | 11 |
Statistical Analysis | 10 |
Bayesian Statistics | 9 |
Sample Size | 9 |
Factor Analysis | 8 |
Simulation | 8 |
More ▼ |
Source
Author
Jeon, Minjeong | 2 |
Adachi, Kohei | 1 |
Alvarado, Jesús M. | 1 |
Arav, Marina | 1 |
Asún, Rodrigo A. | 1 |
Atar, Burcu | 1 |
Blackwell, Matthew | 1 |
Boedeker, Peter | 1 |
Browne, Michael W. | 1 |
Can, Seda | 1 |
Chen, Jinsong | 1 |
More ▼ |
Publication Type
Journal Articles | 26 |
Reports - Research | 17 |
Reports - Descriptive | 6 |
Dissertations/Theses -… | 3 |
Reports - Evaluative | 3 |
Education Level
Elementary Education | 2 |
Elementary Secondary Education | 1 |
Grade 4 | 1 |
Grade 5 | 1 |
High Schools | 1 |
Higher Education | 1 |
Intermediate Grades | 1 |
Postsecondary Education | 1 |
Audience
Researchers | 1 |
Location
Chile | 1 |
South Korea | 1 |
United Kingdom (England) | 1 |
Laws, Policies, & Programs
Assessments and Surveys
Early Childhood Longitudinal… | 1 |
SAT (College Admission Test) | 1 |
What Works Clearinghouse Rating
Doran, Harold – Journal of Educational and Behavioral Statistics, 2023
This article is concerned with a subset of numerically stable and scalable algorithms useful to support computationally complex psychometric models in the era of machine learning and massive data. The subset selected here is a core set of numerical methods that should be familiar to computational psychometricians and considers whitening transforms…
Descriptors: Scaling, Algorithms, Psychometrics, Computation
Zhou, Sherry; Huggins-Manley, Anne Corinne – Educational and Psychological Measurement, 2020
The semi-generalized partial credit model (Semi-GPCM) has been proposed as a unidimensional modeling method for handling not applicable scale responses and neutral scale responses, and it has been suggested that the model may be of use in handling missing data in scale items. The purpose of this study is to evaluate the ability of the…
Descriptors: Models, Statistical Analysis, Response Style (Tests), Test Items
Kilic, Abdullah Faruk; Uysal, Ibrahim; Atar, Burcu – International Journal of Assessment Tools in Education, 2020
This Monte Carlo simulation study aimed to investigate confirmatory factor analysis (CFA) estimation methods under different conditions, such as sample size, distribution of indicators, test length, average factor loading, and factor structure. Binary data were generated to compare the performance of maximum likelihood (ML), mean and variance…
Descriptors: Factor Analysis, Computation, Methods, Sample Size
Boedeker, Peter – Practical Assessment, Research & Evaluation, 2017
Hierarchical linear modeling (HLM) is a useful tool when analyzing data collected from groups. There are many decisions to be made when constructing and estimating a model in HLM including which estimation technique to use. Three of the estimation techniques available when analyzing data with HLM are maximum likelihood, restricted maximum…
Descriptors: Hierarchical Linear Modeling, Maximum Likelihood Statistics, Bayesian Statistics, Computation
Leckie, George – Journal of Educational and Behavioral Statistics, 2018
The traditional approach to estimating the consistency of school effects across subject areas and the stability of school effects across time is to fit separate value-added multilevel models to each subject or cohort and to correlate the resulting empirical Bayes predictions. We show that this gives biased correlations and these biases cannot be…
Descriptors: Value Added Models, Reliability, Statistical Bias, Computation
Pfaffel, Andreas; Schober, Barbara; Spiel, Christiane – Practical Assessment, Research & Evaluation, 2016
A common methodological problem in the evaluation of the predictive validity of selection methods, e.g. in educational and employment selection, is that the correlation between predictor and criterion is biased. Thorndike's (1949) formulas are commonly used to correct for this biased correlation. An alternative approach is to view the selection…
Descriptors: Comparative Analysis, Correlation, Statistical Bias, Maximum Likelihood Statistics
Asún, Rodrigo A.; Rdz-Navarro, Karina; Alvarado, Jesús M. – Sociological Methods & Research, 2016
This study compares the performance of two approaches in analysing four-point Likert rating scales with a factorial model: the classical factor analysis (FA) and the item factor analysis (IFA). For FA, maximum likelihood and weighted least squares estimations using Pearson correlation matrices among items are compared. For IFA, diagonally weighted…
Descriptors: Likert Scales, Item Analysis, Factor Analysis, Comparative Analysis
Adachi, Kohei – Psychometrika, 2013
Rubin and Thayer ("Psychometrika," 47:69-76, 1982) proposed the EM algorithm for exploratory and confirmatory maximum likelihood factor analysis. In this paper, we prove the following fact: the EM algorithm always gives a proper solution with positive unique variances and factor correlations with absolute values that do not exceed one,…
Descriptors: Factor Analysis, Mathematics, Correlation, Maximum Likelihood Statistics
Blackwell, Matthew; Honaker, James; King, Gary – Sociological Methods & Research, 2017
We extend a unified and easy-to-use approach to measurement error and missing data. In our companion article, Blackwell, Honaker, and King give an intuitive overview of the new technique, along with practical suggestions and empirical applications. Here, we offer more precise technical details, more sophisticated measurement error model…
Descriptors: Error of Measurement, Correlation, Simulation, Bayesian Statistics
Sahin, Alper; Weiss, David J. – Educational Sciences: Theory and Practice, 2015
This study aimed to investigate the effects of calibration sample size and item bank size on examinee ability estimation in computerized adaptive testing (CAT). For this purpose, a 500-item bank pre-calibrated using the three-parameter logistic model with 10,000 examinees was simulated. Calibration samples of varying sizes (150, 250, 350, 500,…
Descriptors: Adaptive Testing, Computer Assisted Testing, Sample Size, Item Banks
Can, Seda; van de Schoot, Rens; Hox, Joop – Educational and Psychological Measurement, 2015
Because variables may be correlated in the social and behavioral sciences, multicollinearity might be problematic. This study investigates the effect of collinearity manipulated in within and between levels of a two-level confirmatory factor analysis by Monte Carlo simulation. Furthermore, the influence of the size of the intraclass correlation…
Descriptors: Factor Analysis, Comparative Analysis, Maximum Likelihood Statistics, Bayesian Statistics
Jeon, Minjeong; Rijmen, Frank; Rabe-Hesketh, Sophia – Journal of Educational and Behavioral Statistics, 2013
The authors present a generalization of the multiple-group bifactor model that extends the classical bifactor model for categorical outcomes by relaxing the typical assumption of independence of the specific dimensions. In addition to the means and variances of all dimensions, the correlations among the specific dimensions are allowed to differ…
Descriptors: Test Bias, Generalization, Models, Item Response Theory
MacDonald, George T. – ProQuest LLC, 2014
A simulation study was conducted to explore the performance of the linear logistic test model (LLTM) when the relationships between items and cognitive components were misspecified. Factors manipulated included percent of misspecification (0%, 1%, 5%, 10%, and 15%), form of misspecification (under-specification, balanced misspecification, and…
Descriptors: Simulation, Item Response Theory, Models, Test Items
Coughlin, Kevin B. – ProQuest LLC, 2013
This study is intended to provide researchers with empirically derived guidelines for conducting factor analytic studies in research contexts that include dichotomous and continuous levels of measurement. This study is based on the hypotheses that ordinary least squares (OLS) factor analysis will yield more accurate parameter estimates than…
Descriptors: Comparative Analysis, Least Squares Statistics, Maximum Likelihood Statistics, Factor Analysis
Peugh, James L. – Journal of Early Adolescence, 2014
Applied early adolescent researchers often sample students (Level 1) from within classrooms (Level 2) that are nested within schools (Level 3), resulting in data that requires multilevel modeling analysis to avoid Type 1 errors. Although several articles have been published to assist researchers with analyzing sample data nested at two levels, few…
Descriptors: Early Adolescents, Research, Hierarchical Linear Modeling, Data Analysis
Previous Page | Next Page »
Pages: 1 | 2