NotesFAQContact Us
Collection
Advanced
Search Tips
Showing all 4 results Save | Export
Peer reviewed Peer reviewed
Fava, Joseph L.; Velicer, Wayne F. – Multivariate Behavioral Research, 1992
Effects of overextracting factors and components within and between maximum likelihood factor analysis and principal components analysis were examined through computer simulation of a range of factor and component patterns. Results demonstrate similarity of component and factor scores during overextraction. Overall, results indicate that…
Descriptors: Computer Simulation, Correlation, Factor Analysis, Mathematical Models
Peer reviewed Peer reviewed
Bacon, Donald R. – Multivariate Behavioral Research, 1995
A maximum likelihood approach to correlational outlier identification is introduced and compared to the Mahalanobis D squared and Comrey D statistics through Monte Carlo simulation. Identification performance depends on the nature of correlational outliers and the measure used, but the maximum likelihood approach is the most robust performance…
Descriptors: Comparative Analysis, Computer Simulation, Correlation, Estimation (Mathematics)
Peer reviewed Peer reviewed
O'Grady, Kevin E.; Medoff, Deborah R. – Multivariate Behavioral Research, 1991
A procedure for evaluating a variety of rater reliability models is presented. A multivariate linear model is used to describe and assess a set of ratings. Parameters are represented in terms of a factor analytic model, and maximum likelihood methods test the model parameters. Illustrative examples are presented. (SLD)
Descriptors: Comparative Analysis, Correlation, Equations (Mathematics), Estimation (Mathematics)
Peer reviewed Peer reviewed
Direct linkDirect link
Vermunt, Jeroen K. – Multivariate Behavioral Research, 2005
A well-established approach to modeling clustered data introduces random effects in the model of interest. Mixed-effects logistic regression models can be used to predict discrete outcome variables when observations are correlated. An extension of the mixed-effects logistic regression model is presented in which the dependent variable is a latent…
Descriptors: Predictor Variables, Correlation, Maximum Likelihood Statistics, Error of Measurement