NotesFAQContact Us
Collection
Advanced
Search Tips
Laws, Policies, & Programs
Assessments and Surveys
Program for International…1
What Works Clearinghouse Rating
Showing 1 to 15 of 51 results Save | Export
Peer reviewed Peer reviewed
Direct linkDirect link
Hilliker, Angela K.; Grayson, Kristine L. – Biochemistry and Molecular Biology Education, 2022
As biologists accumulate or encounter increasingly large and complex data sets, our field creates the need for students to develop skills in data exploration and visualization. Many biology courses lack the time for students to develop the skills needed to parse complex datasets and visualize them appropriately. We developed a new upper-level…
Descriptors: Science Instruction, Biology, Undergraduate Students, Data Collection
Peer reviewed Peer reviewed
Direct linkDirect link
Toscanini, MariaA.; Recoulat Angelini, Alvaro A.; Troncoso, Maria F.; Curto, Lucrecia M. – Journal of Chemical Education, 2021
Understanding the relationship between protein structure and function can be challenging for students. Molecular visualization software aids students in this problem by allowing manipulation of structures from new and deeper perspectives. In this communication, an activity using iMolview Lite, structure visualization software for portable devices,…
Descriptors: Science Instruction, Molecular Structure, Visualization, Computer Software
Peer reviewed Peer reviewed
Direct linkDirect link
Stolzenberger, Christoph; Frank, Florian; Trefzger, Thomas – Physics Education, 2022
With the help of augmented reality apps objects and text can be added virtually to the physical world (e.g. physical experiments) in real time. The augmented reality (AR) app 'PUMA: "Spannungslabor"' enhances simple electric circuits experiments for students with virtual representations based on the electron gas analogy including…
Descriptors: Physics, Science Instruction, Energy, Artificial Intelligence
Peer reviewed Peer reviewed
Direct linkDirect link
Fombona-Pascual, Alba; Fombona, Javier; Vazquez-Cano, Esteban – Chemistry Education Research and Practice, 2022
Atomic/molecular visualization for human sight is usually generated by a software that reproduces a 3D reality on a 2D screen. Although Virtual Reality (VR) software was originally developed for the gaming industry, now it is used in academia for chemistry teaching. This work reviews the scientific literature on 3D visualization in stereoscopic…
Descriptors: Chemistry, Science Instruction, Scientific Research, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Allen, Thomas; Chally, Alex; Moser, Bradley; Widenhorn, Ralf – Physics Teacher, 2019
The labs presented here build on a simple speed of sound activity and models medical ultrasound imaging by demonstrating how multiple reflections propagate in a closed system. A short sound pulse is emitted into a pipe that is closed at one end and contains one or more partially reflecting surfaces within the pipe. The variety of reflections and…
Descriptors: Physics, Science Instruction, Acoustics, Diagnostic Tests
Peer reviewed Peer reviewed
Direct linkDirect link
Peterson, Celeste N.; Tavana, Sara Z.; Akinleye, Olukemi P.; Johnson, Walter H.; Berkmen, Melanie B. – Biochemistry and Molecular Biology Education, 2020
Biology and biochemistry students must learn to visualize and comprehend the complex three-dimensional (3D) structures of macromolecules such as proteins or DNA. However, most tools available for teaching biomolecular structures typically operate in two dimensions. Here, we present protocols and pedagogical approaches for using immersive augmented…
Descriptors: Teaching Methods, Molecular Structure, Computer Software, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Mayes, Howard; Wong, Chung F. – Journal of Chemical Education, 2018
A new program, ECEP2D, for simulating the one-dimensional (1D) and two-dimensional (2D) patterns of the gel electrophoresis of a protein after it has been digested by one or more enzymes is introduced. With ECEP2D, students can gain deeper insights into gel electrophoresis by performing hands-on simulations. For example, students can visualize how…
Descriptors: Computer Software, Computer Simulation, Comparative Analysis, Biochemistry
Peer reviewed Peer reviewed
Direct linkDirect link
Nagaoka, Shin-ichi; Kokubo, Tatsunobu; Teramae, Hiroyuki; Nagashima?, Umpei – Journal of Chemical Education, 2018
At an advanced stage of learning quantum chemistry, undergraduate students usually encounter simple Hückel-molecular-orbital (HMO) theory, whose primitive approach gives very useful insight into the electronic structure of p-conjugated molecules. However, on one hand, computational HMO software, when programmed without using molecular symmetry,…
Descriptors: Visualization, Chemistry, Science Instruction, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Argu¨ello, Jose´ M.; Dempski, Robert E. – Journal of Chemical Education, 2020
Facile visualization of biomolecules is an essential component of the undergraduate biochemistry curriculum. In the past, a number of tools have been used to display biomolecules. More recently, the advent of greater accessibility to virtual reality (VR) and augmented reality (AR) programs has created a new mechanism to visualize biomolecules.…
Descriptors: Visualization, Undergraduate Students, Biochemistry, Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
Aw, Jonah Kailer; Boellaard, Kevin Christopher; Tan, Teck Kiang; Yap, John; Loh, Yi Ping; Colasson, Benoît; Blanc, Étienne; Lam, Yulin; Fung, Fun Man – Journal of Chemical Education, 2020
Visualization of three-dimensional (3D) elements has always played a huge role in chemistry education. At the same time, it is a challenge to teach with most representations being shown in two-dimensional (2D) media. With the recent rise of extended reality (XR) that includes virtual and augmented reality (VR/AR) technology in higher education,…
Descriptors: Molecular Structure, Science Instruction, Teaching Methods, Computer Simulation
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Coan, Heather A.; Goehle, Geoff; Youker, Robert T. – Journal of Teaching and Learning, 2020
The commercialization of virtual reality (VR) hardware has enabled the use of VR as an educational tool. We describe how a VR platform was used to create molecular visualizations using standard PDB files with the purpose of delivering biochemistry and cellular biology lessons for undergraduates. Specifically, we describe two new software modules,…
Descriptors: Biochemistry, Molecular Biology, Science Instruction, Teaching Methods
Peer reviewed Peer reviewed
PDF on ERIC Download full text
Singh, Satya Pal – European Journal of Physics Education, 2019
Quantum mechanics has completed century since its genesis. Quantum mechanics is taught at various levels-starting from school and colleges to universities. Regression methods are introduced at under graduate and post graduate levels to solve Schrodinger equation for finding solutions of various trivial and non-trivial physical problems. The common…
Descriptors: Problem Solving, Quantum Mechanics, Mechanics (Physics), Science Instruction
Peer reviewed Peer reviewed
Direct linkDirect link
de Cataldo, Riccardo; Griffith, Kaitlyn M.; Fogarty, Keir H. – Journal of Chemical Education, 2018
Introductory chemistry students encounter the concept of hybrid orbitals as a transition from atomic orbitals to molecular bonding. The principal purpose of learning hybridization in the undergraduate curriculum is to impart an understanding of the origins of molecular bonding and geometry. Physical models of both individual hybrid orbitals and…
Descriptors: Introductory Courses, Science Instruction, Visualization, Molecular Structure
Peer reviewed Peer reviewed
Direct linkDirect link
Körber, C.; Hammer, I.; Wynen, J.-L.; Heuer, J.; Müller, C.; Hanhart, C. – Physics Education, 2018
Numerical simulations are playing an increasingly important role in modern science. In this work it is suggested to use a numerical study of the famous perihelion motion of the planet Mercury (one of the prime observables supporting Einsteins general relativity) as a test case to teach numerical simulations to high school students. The paper…
Descriptors: Motion, Physics, Science Instruction, Simulation
Peer reviewed Peer reviewed
Direct linkDirect link
Holly, Michael; Pirker, Johanna; Resch, Sebastian; Brettschuh, Sandra; Gütl, Christian – Educational Technology & Society, 2021
Skills in science, technology, engineering, and mathematics (STEM) are increasingly in demand. Theoretical knowledge and formulas alone are frequently not sufficient to understand complex phenomena. Simulations are a valuable tool to support the conceptual understanding by visualizing invisible processes. The constant interaction with the learning…
Descriptors: Instructional Design, STEM Education, Computer Simulation, Visualization
Previous Page | Next Page »
Pages: 1  |  2  |  3  |  4