Publication Date
In 2025 | 3 |
Since 2024 | 10 |
Since 2021 (last 5 years) | 24 |
Since 2016 (last 10 years) | 26 |
Since 2006 (last 20 years) | 26 |
Descriptor
Computer Software | 26 |
Learning Analytics | 26 |
Prediction | 26 |
Artificial Intelligence | 12 |
Accuracy | 10 |
Models | 8 |
Academic Achievement | 7 |
Algorithms | 6 |
Comparative Analysis | 6 |
Data Analysis | 6 |
Foreign Countries | 5 |
More ▼ |
Source
Author
Cummins, Phyllis A. | 2 |
Koprinska, Irena | 2 |
Smith, Thomas J. | 2 |
Yacef, Kalina | 2 |
Yamashita, Takashi | 2 |
Abdelali Zakrani | 1 |
Abdellah Bennane | 1 |
Adam Sales | 1 |
Adjei, Seth A. | 1 |
Akihito Kamata | 1 |
Barollet, Théo | 1 |
More ▼ |
Publication Type
Reports - Research | 19 |
Journal Articles | 14 |
Speeches/Meeting Papers | 9 |
Reports - Descriptive | 4 |
Dissertations/Theses -… | 1 |
Information Analyses | 1 |
Reports - Evaluative | 1 |
Education Level
Higher Education | 8 |
Postsecondary Education | 8 |
Elementary Education | 3 |
Early Childhood Education | 2 |
Primary Education | 2 |
Secondary Education | 2 |
Grade 2 | 1 |
Grade 3 | 1 |
Grade 4 | 1 |
Grade 8 | 1 |
High Schools | 1 |
More ▼ |
Audience
Laws, Policies, & Programs
Assessments and Surveys
Program for the International… | 2 |
National Assessment of… | 1 |
Test of English for… | 1 |
What Works Clearinghouse Rating
Hanqiang Liu; Xiao Chen; Feng Zhao – Education and Information Technologies, 2024
Massive open online courses (MOOCs) have become one of the most popular ways of learning in recent years due to their flexibility and convenience. However, high dropout rate has become a prominent problem that hinders the further development of MOOCs. Therefore, the prediction of student dropouts is the key to further enhance the MOOCs platform.…
Descriptors: MOOCs, Video Technology, Behavior Patterns, Prediction
Khajonmote, Withamon; Chinsook, Kittipong; Klintawon, Sununta; Sakulthai, Chaiyan; Leamsakul, Wicha; Jansawang, Natchanok; Jantakoon, Thada – Journal of Education and Learning, 2022
The system architecture of big data in massive open online courses (BD-MOOCs System Architecture) is composed of six components. The first component was comprised of big data tools and technologies such as Hadoop, YARN, HDFS, Spark, Hive, Sqoop, and Flume. The second component was educational data science, which is composed of the following four…
Descriptors: MOOCs, Data Collection, Student Behavior, Computer Software
Dragos-Georgian Corlatescu; Micah Watanabe; Stefan Ruseti; Mihai Dascalu; Danielle S. McNamara – Grantee Submission, 2024
Modeling reading comprehension processes is a critical task for Learning Analytics, as accurate models of the reading process can be used to match students to texts, identify appropriate interventions, and predict learning outcomes. This paper introduces an improved version of the Automated Model of Comprehension, namely version 4.0. AMoC has its…
Descriptors: Computer Software, Artificial Intelligence, Learning Analytics, Natural Language Processing
Yamauchi, Taisei; Flanagan, Brendan; Nakamoto, Ryosuke; Dai, Yiling; Takami, Kyosuke; Ogata, Hiroaki – Smart Learning Environments, 2023
In recent years, smart learning environments have become central to modern education and support students and instructors through tools based on prediction and recommendation models. These methods often use learning material metadata, such as the knowledge contained in an exercise which is usually labeled by domain experts and is costly and…
Descriptors: Mathematics Instruction, Classification, Algorithms, Barriers
Deho, Oscar Blessed; Zhan, Chen; Li, Jiuyong; Liu, Jixue; Liu, Lin; Duy Le, Thuc – British Journal of Educational Technology, 2022
With the widespread use of learning analytics (LA), ethical concerns about fairness have been raised. Research shows that LA models may be biased against students of certain demographic subgroups. Although fairness has gained significant attention in the broader machine learning (ML) community in the last decade, it is only recently that attention…
Descriptors: Ethics, Learning Analytics, Social Bias, Computer Software
Xavier Ochoa; Xiaomeng Huang; Yuli Shao – Journal of Learning Analytics, 2025
Generative AI (GenAI) has the potential to revolutionize the analysis of educational data, significantly impacting learning analytics (LA). This study explores the capability of non-experts, including administrators, instructors, and students, to effectively use GenAI for descriptive LA tasks without requiring specialized knowledge in data…
Descriptors: Learning Analytics, Artificial Intelligence, Computer Software, Scores
Tanjea Ane; Tabatshum Nepa – Research on Education and Media, 2024
Precision education derives teaching and learning opportunities by customizing predictive rules in educational methods. Innovative educational research faces new challenges and affords state-of-the-art methods to trace knowledge between the teaching and learning ecosystem. Individual intelligence can only be captured through knowledge level…
Descriptors: Artificial Intelligence, Prediction, Models, Teaching Methods
Lei Tao; Hao Deng; Yanjie Song – Educational Technology & Society, 2025
Information and communication technologies have transformed education, driving it towards intelligent teaching and learning. With the rise of generative artificial intelligence (AI), represented by tools such as ChatGPT, there is also a growing body of literature on generative AI in education. In this study, we searched the Scopus, ERIC, and Web…
Descriptors: Artificial Intelligence, Computer Software, Technology Uses in Education, Teaching Methods
Yamashita, Takashi; Smith, Thomas J.; Cummins, Phyllis A. – Journal of Educational and Behavioral Statistics, 2021
In order to promote the use of increasingly available large-scale assessment data in education and expand the scope of analytic capabilities among applied researchers, this study provides step-by-step guidance, and practical examples of syntax and data analysis using Maples. Concise overview and key unique aspects of large-scale assessment data…
Descriptors: Learning Analytics, Computer Software, Syntax, Adults
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Yanping Pei; Adam Sales; Johann Gagnon-Bartsch – Grantee Submission, 2024
Randomized A/B tests within online learning platforms enable us to draw unbiased causal estimators. However, precise estimates of treatment effects can be challenging due to minimal participation, resulting in underpowered A/B tests. Recent advancements indicate that leveraging auxiliary information from detailed logs and employing design-based…
Descriptors: Randomized Controlled Trials, Learning Management Systems, Causal Models, Learning Analytics
Yamashita, Takashi; Smith, Thomas J.; Cummins, Phyllis A. – Grantee Submission, 2020
Background: Several statistical applications including Mplus, STATA, and R are available to conduct analyses such as structural equation modeling and multi-level modeling using large-scale assessment data that employ complex sampling and assessment designs and that provide associated information such as sampling weights, replicate weights, and…
Descriptors: Learning Analytics, Computer Software, Syntax, Adults
Paassen, Benjamin; McBroom, Jessica; Jeffries, Bryn; Koprinska, Irena; Yacef, Kalina – Journal of Educational Data Mining, 2021
Educational data mining involves the application of data mining techniques to student activity. However, in the context of computer programming, many data mining techniques can not be applied because they require vector-shaped input, whereas computer programs have the form of syntax trees. In this paper, we present ast2vec, a neural network that…
Descriptors: Data Analysis, Programming Languages, Networks, Novices
Xu, Yinuo; Pardos, Zachary A. – International Educational Data Mining Society, 2023
In studies that generate course recommendations based on similarity, the typical enrollment data used for model training consists only of one record per student-course pair. In this study, we explore and quantify the additional signal present in course transaction data, which includes a more granular account of student administrative interactions…
Descriptors: Semantics, Enrollment Trends, Learning Analytics, STEM Education
Jamal Eddine Rafiq; Abdelali Zakrani; Mohammed Amraouy; Said Nouh; Abdellah Bennane – Turkish Online Journal of Distance Education, 2025
The emergence of online learning has sparked increased interest in predicting learners' academic performance to enhance teaching effectiveness and personalized learning. In this context, we propose a complex model APPMLT-CBT which aims to predict learners' performance in online learning settings. This systemic model integrates cognitive, social,…
Descriptors: Models, Online Courses, Educational Improvement, Learning Processes
Previous Page | Next Page »
Pages: 1 | 2