Publication Date
In 2025 | 4 |
Since 2024 | 8 |
Since 2021 (last 5 years) | 18 |
Since 2016 (last 10 years) | 19 |
Since 2006 (last 20 years) | 19 |
Descriptor
Accuracy | 19 |
Computer Software | 19 |
Learning Analytics | 19 |
Prediction | 10 |
Algorithms | 7 |
Artificial Intelligence | 7 |
Comparative Analysis | 7 |
Models | 5 |
Online Courses | 5 |
Academic Achievement | 4 |
Correlation | 4 |
More ▼ |
Source
Author
PaaBen, Benjamin | 2 |
Abdelali Zakrani | 1 |
Abdellah Bennane | 1 |
Adjei, Seth A. | 1 |
Aleven, Vincent | 1 |
Barollet, Théo | 1 |
Borchers, Conrad | 1 |
Bosch, Nigel | 1 |
Botelho, Anthony F. | 1 |
Bouchez Tichadou, Florent | 1 |
Christina Weiland | 1 |
More ▼ |
Publication Type
Reports - Research | 16 |
Journal Articles | 10 |
Speeches/Meeting Papers | 7 |
Dissertations/Theses -… | 1 |
Reports - Descriptive | 1 |
Reports - Evaluative | 1 |
Education Level
Audience
Location
Africa | 1 |
Asia | 1 |
California (Berkeley) | 1 |
Europe | 1 |
Latin America | 1 |
Massachusetts (Boston) | 1 |
Singapore | 1 |
United States | 1 |
Laws, Policies, & Programs
Assessments and Surveys
National Assessment of… | 1 |
What Works Clearinghouse Rating
Hui Han; Silvana Trimi – Education and Information Technologies, 2024
Cloud computing-based online education has played a vital role in enabling uninterrupted learning during crises such as the COVID-19 pandemic. This study explored the key variables associated with cloud computing that can effectively support the operation of online education platforms. By analyzing real data from 63 online learning platforms, the…
Descriptors: Computer Software, Learning Management Systems, Online Courses, Correlation
Gyeonggeon Lee; Xiaoming Zhai – TechTrends: Linking Research and Practice to Improve Learning, 2025
Educators and researchers have analyzed various image data acquired from teaching and learning, such as images of learning materials, classroom dynamics, students' drawings, etc. However, this approach is labour-intensive and time-consuming, limiting its scalability and efficiency. The recent development in the Visual Question Answering (VQA)…
Descriptors: Artificial Intelligence, Computer Software, Teaching Methods, Learning Processes
Zi Xiang Poh; Ean Teng Khor – International Journal on E-Learning, 2024
Machine learning and data mining techniques have been widely used in educational settings to identify the important features that tend to influence students' learning performance and predict their future performance. However, there is little to no research done in the context of Singapore's education. Hence, this study aims to fill the gap by…
Descriptors: Learning Analytics, Goodness of Fit, Academic Achievement, Online Courses
Shaheen, Muhammad – Interactive Learning Environments, 2023
Outcome-based education (OBE) is uniquely adapted by most of the educators across the world for objective processing, evaluation and assessment of computing programs and its students. However, the extraction of knowledge from OBE in common is a challenging task because of the scattered nature of the data obtained through Program Educational…
Descriptors: Undergraduate Students, Programming, Computer Science Education, Educational Objectives
Yunus Kökver; Hüseyin Miraç Pektas; Harun Çelik – Education and Information Technologies, 2025
This study aims to determine the misconceptions of teacher candidates about the greenhouse effect concept by using Artificial Intelligence (AI) algorithm instead of human experts. The Knowledge Discovery from Data (KDD) process model was preferred in the study where the Analyse, Design, Develop, Implement, Evaluate (ADDIE) instructional design…
Descriptors: Artificial Intelligence, Misconceptions, Preservice Teachers, Natural Language Processing
Shou, Tianze; Borchers, Conrad; Karumbaiah, Shamya; Aleven, Vincent – International Educational Data Mining Society, 2023
Spatial analytics receive increased attention in educational data mining. A critical issue in stop detection (i.e., the automatic extraction of timestamped and located stops in the movement of individuals) is a lack of validation of stop accuracy to represent phenomena of interest. Next to a radius that an actor does not exceed for a certain…
Descriptors: Classroom Design, Accuracy, Validity, Space Utilization
Xu, Yinuo; Pardos, Zachary A. – International Educational Data Mining Society, 2023
In studies that generate course recommendations based on similarity, the typical enrollment data used for model training consists only of one record per student-course pair. In this study, we explore and quantify the additional signal present in course transaction data, which includes a more granular account of student administrative interactions…
Descriptors: Semantics, Enrollment Trends, Learning Analytics, STEM Education
Jamal Eddine Rafiq; Abdelali Zakrani; Mohammed Amraouy; Said Nouh; Abdellah Bennane – Turkish Online Journal of Distance Education, 2025
The emergence of online learning has sparked increased interest in predicting learners' academic performance to enhance teaching effectiveness and personalized learning. In this context, we propose a complex model APPMLT-CBT which aims to predict learners' performance in online learning settings. This systemic model integrates cognitive, social,…
Descriptors: Models, Online Courses, Educational Improvement, Learning Processes
Williamson, Kimberly; Kizilcec, René F. – International Educational Data Mining Society, 2021
Knowledge tracing algorithms such as Bayesian Knowledge Tracing (BKT) can provide students and teachers with helpful information about their progress towards learning objectives. Despite the popularity of BKT in the research community, the algorithm is not widely adopted in educational practice. This may be due to skepticism from users and…
Descriptors: Bayesian Statistics, Learning Processes, Computer Software, Learning Analytics
Picones, Gio; PaaBen, Benjamin; Koprinska, Irena; Yacef, Kalina – International Educational Data Mining Society, 2022
In this paper, we propose a novel approach to combine domain modelling and student modelling techniques in a single, automated pipeline which does not require expert knowledge and can be used to predict future student performance. Domain modelling techniques map questions to concepts and student modelling techniques generate a mastery score for a…
Descriptors: Prediction, Academic Achievement, Learning Analytics, Concept Mapping
Cukurova, Mutlu; Khan-Galaria, Madiha; Millán, Eva; Luckin, Rose – Journal of Learning Analytics, 2022
One-to-one online tutoring provided by human tutors can improve students' learning outcomes. However, monitoring the quality of such tutoring is a significant challenge. In this paper, we propose a learning analytics approach to monitoring online one-to-one tutoring quality. The approach analyzes teacher behaviours and classifies tutoring sessions…
Descriptors: Learning Analytics, Tutoring, Educational Quality, Behavior Patterns
Ni Li – International Journal of Web-Based Learning and Teaching Technologies, 2025
In depth exploration of how the pandemic has reshaped the education ecosystem over the past three years, especially in the context of the surge in demand for online education courses and learning platforms, this article focuses on the field of student ideological and political education, and innovatively constructs a moral and political education…
Descriptors: Artificial Intelligence, Computer Software, Technology Integration, Algorithms
Mingying Zheng – ProQuest LLC, 2024
The digital transformation in educational assessment has led to the proliferation of large-scale data, offering unprecedented opportunities to enhance language learning, and testing through machine learning (ML) techniques. Drawing on the extensive data generated by online English language assessments, this dissertation investigates the efficacy…
Descriptors: Artificial Intelligence, Computational Linguistics, Language Tests, English (Second Language)
PaaBen, Benjamin; Dywel, Malwina; Fleckenstein, Melanie; Pinkwart, Niels – International Educational Data Mining Society, 2022
Item response theory (IRT) is a popular method to infer student abilities and item difficulties from observed test responses. However, IRT struggles with two challenges: How to map items to skills if multiple skills are present? And how to infer the ability of new students that have not been part of the training data? Inspired by recent advances…
Descriptors: Item Response Theory, Test Items, Item Analysis, Inferences
Parhizkar, Amirmohammad; Tejeddin, Golnaz; Khatibi, Toktam – Education and Information Technologies, 2023
Increasing productivity in educational systems is of great importance. Researchers are keen to predict the academic performance of students; this is done to enhance the overall productivity of educational system by effectively identifying students whose performance is below average. This universal concern has been combined with data science…
Descriptors: Algorithms, Grade Point Average, Interdisciplinary Approach, Prediction
Previous Page | Next Page »
Pages: 1 | 2